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Abstract 

 
VASCO, Gabriel, 2023. Modeling climate and land-use change impacts on water resources in the São 
Francisco River Basin, Brazil. Thesis (Doctorate), Federal Rural University of Pernambuco, Recife – PE, 
Brazil. 
 

Socio-global changes strongly affect water resources, impairing both water quantity and water quality 
worldwide. As demand hits the limits of supply, inter-sectoral competition increases, water quality declines 
and climate change represent an additional challenge for water resources management. Assessments of the 
hydrologic impacts of climate change and land-use change are, therefore, carried out around the world, 
including in Brazil. However, simultaneously effects of these two stressors on water resources are not often 
comprehensively investigated and need to be studied to evaluate the potential adaptability strategies of water 
resources management for coping with climate uncertainties. Therefore, in this thesis, the impacts of climate 
and land-use change on water resources were modeled to support water security policy in the São Francisco 
River Basin. Chapter 1 addresses the general introduction of this thesis (containing the hypothesis, main 
and specific goals), and a literature review to better understand the state of the art, highlighting the 
importance of addressing water security concerns in the context of climate change and land use and land 
cover changes. Chapter 2 describes how the developed land-use spatially explicit model through the 
LuccME modeling framework, was applied to forecast land-use scenarios for future pathways up to 2050. 
Chapter 3 details how a total of nine Global Circulation Models (GCMs) were combined and termed as 
Multi-Model Ensemble (MME) using the Reliable Ensemble Averaging (REA) approach, which in turn was 
submitted for bias-correction using the CMhyd model, to address the underlying uncertainties in climate 
modeling. After that, the developed MME was applied for a statistical long-term trends analysis of observed 
gridded precipitation and temperature data using four no-parametric trend tests in annual, dry, rainy, and 
pre-season periods, being spatially interpolated using Inverse Distance Weighting (IDW) geostatistical 
technique. Chapter 4 describes the evaluation of the impacts of climate change on water resources in the 
SFRB, considering two scenarios of greenhouse gas emissions: RCP 4.5 and RCP 8.5, and three time 
periods: short-, medium-, and long-term by the end of the 21st-century. Finally, Chapter 5 contains the 
summary of the main findings, drawing comprehensive conclusions from this thesis. The results obtained 
in this thesis showed the feasibility of coupled land-use changes, hydrological, and climatic studies using 
spatially explicit, mathematical, and computational modeling, being promising for the water resources 
management of the São Francisco River basin. All the findings will serve as a basis for the development of 
more effective climatic adaptation strategies to ensure more coordinated management between different 
aspects of water issues which will be useful for the Integrated Water Resources Management Model 
(IWRM) for the selected watersheds of India, Brazil, and South Africa, under development within the 
ongoing multilateral BRICS project. Overall, the results achieved, and the lessons learned in this thesis can 
help researchers around the world to better understand how to couple different approaches to assess the 
combined impacts of land-use change and climate change on hydrological behavior and how to draw up the 
strategies for coping with its risks in different climatic conditions. 
 
Keywords: water balance, hydrology, water resources management, climate data ensemble, trend analysis, 
temperature, precipitation, climate uncertainties, water security, SWAT model, land-use scenarios, São 
Francisco river basin. 
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Resumo 
 
VASCO, Gabriel, 2023. Modelagem dos impactos das mudanças climáticas e do uso da  terra sobre os 
recursos hídricos na Bacia do Rio São Francisco, Brasil. Tese (Doutorado), Universidade Federal Rural 
de Pernambuco, Recife – PE, Brasil. 
 
As mudanças socioglobais afetam fortemente os recursos hídricos, prejudicando tanto a quantidade quanto 
a qualidade da água em todo o mundo. À medida que a demanda atinge os limites da oferta, a concorrência 
intersetorial aumenta, a qualidade da água diminui e as mudanças climáticas representam um desafio 
adicional para a gestão dos recursos hídricos. Avaliações dos impactos hidrológicos das mudanças 
climáticas e do uso da terra são, portanto, realizadas em todo o mundo, inclusive no Brasil. No entanto, os 
efeitos simultâneos dos dois estressores sobre os recursos hídricos não são frequentemente investigados de 
forma abrangente e precisam ser estudados para avaliar as potenciais estratégias de adaptabilidade da gestão 
de recursos hídricos para lidar com as incertezas climáticas. Assim, nesta tese modelou-se os impactos das 
mudanças climaticas e do uso da terra nos recursos hídricos para subsidiar a política de segurança hídrica 
na bacia do rio São Francisco. O capítulo 1 aborda a introdução geral desta tese (contendo a hipótese, 
objetivos principais e específicos), e uma revisão da literatura para melhor compreender o estado da arte, 
destacando a importância de abordar as preocupações de segurança hídrica no contexto das alterações 
climáticas, e mudanças do uso e ocupação da terra. O Capítulo 2 descreve como o modelo desenvolvido de 
mudanças no uso da terra, usando a abordagem espacialmente explícita por meio da estrutura de modelagem 
LuccME, foi aplicado para prever cenários de uso da terra para caminhos futuros até 2050. O Capítulo 3 
detalha como nove Modelos Climáticos Globais e Regionais (GCM/RCMs) foram agrupados em um único 
modelo climático usando a abordagem Reliable Ensemble Averaging (REA), bem como, posteriormente, a 
correção de viés do multimodelo (MME) desenvolvido usando o modelo CMhyd. Além disso, uma análise 
estatística de tendências de longo prazo dos dados de precipitação e temperatura em grade observados 
usando quatro métodos diferentes em períodos anuais, secos, chuvosos e pré-estação foi feita e interpolada 
espacialmente usando a técnica geoestatística de Ponderação de Distância Inversa (IDW). O Capítulo 4 
descreve a avaliação dos impactos das mudanças climáticas nos recursos hídricos na bacia do rio São 
Francisco, considerando dois cenários de emissões de gases de efeito estufa: RCP 4.5 e RCP 8.5, e três 
períodos de tempo: curto, médio prazo e longo prazo até o final do século 21. Finalmente, o Capítulo 5 
contém o resumo dos principais achados, e conclusões abrangentes desta tese. Os resultados obtidos nesta 
tese mostraram a viabilidade de acoplar de estudos hidrológicos, climáticos e de mudanças de uso da terra, 
utilizando modelagem espacialmente explícita, matemática e computacional, sendo promissores para a 
gestão dos recursos hídricos da bacia do rio São Francisco. Todas as descobertas servirão de base para o 
desenvolvimento de estratégias de adaptação climática mais eficazes para garantir uma gestão mais 
coordenada entre os diferentes aspectos das questões hídricas, o que será útil para o Modelo Integrado de 
Gestão de Recursos Hídricos (GIRH) para as bacias hidrográficas selecionadas da Índia, Brasil e África do 
Sul, em desenvolvimento dentro do projeto multilateral BRICS em andamento. No geral, os resultados 
alcançados e as lições aprendidas nesta tese podem ajudar pesquisadores de todo o mundo a entender melhor 
como combinar diferentes abordagens para avaliar os impactos combinados das mudanças no uso da terra e 
das mudanças climáticas no comportamento hidrológico e como elaborar as estratégias para lidar com seus 
riscos em diferentes condições climáticas. 
 
Palavras-chave: balanço hídrico, hidrologia, gestão de recursos hídricos, multimodelo, análise de 
tendências, temperatura, precipitação, incertezas climáticas, segurança hídrica, modelo SWAT, cenários de 
uso da terra, bacia do rio São Francisco. 
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Background, general introduction, 

research hypotheses, objectives, and 
literature review 
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1. Background and general introduction 

Population growth and urbanization1 are two of the main modulators of Water, Energy, and 

Food (WEF) nexus demands (FAO, 2011; FAO, 2015; UN, 2015a; YAN et al., 2017), as the 

growing demand for human needs, raises pressure on resources. 

It is predicted that by 2050 agricultural production may increase by up to 70% compared to 

the year 2000 so that it becomes possible to produce food for over 9 million people worldwide 

(ALEXANDRATOS; BRUINSMA, 2012).  

Because agriculture relies heavily on water, which is a scarce and finite resource, 

sustainable management is essential to reduce green water footprint (fraction of green water that is 

consumed by agricultural soils, for example, evapotranspiration from cultivation areas and 

permanent pastures), as well as the blue water footprint that represents the consumptive use of blue 

water sources (surface waters and groundwater bodies) (HOEKSTRA, 2003; HOEKSTRA et al., 

2011; ALDAYA et al., 2012). 

The global water footprint at the end of the 20th century was estimated at approximately 

9000 km3/per year, where agriculture consumed 92%, and the remaining 8% was for industrial, 

domestic, and other sectors (HOEKSTRA and MEKKONEN, 2012). By 2050, demand for food 

production in developing countries is expected to increase by 100% (ROSEMARIN et al., 2011), 

and global energy demand will increase by 36% by 2035 (IEA, 2014), while Brazil plans to triple 

electricity consumption by 2030 (MENDES; BELUCO; CANALES, 2017).  

This will increase water demand (BIEMANS et al., 2011), not only to supply energy 

production but also to several sectors that are heavily dependent on the water including economic 

activities, which will reach a demand of about 2,600 m3/s in 2030 (ANA, 2019). 

Land use/cover changes are important due to their direct effects on the hydrological and 

ecological characteristics of the watershed (VIOLA et al., 2014). These alter the soil water balance, 

with reflections in both superficial and sub-superficial layers (Kundu et al., 2017), which may 

reduce the availability of water sources by silting (APARECIDO et al., 2016), in addition to 

contributing to changes (increased temperature due to anthropogenic activities, the poor 

spatiotemporal distribution of precipitation, the occurrence of extreme climatic events, such as 

floods and droughts) (TUCCI, 2009; SOARES et al., 2012; NAZEMI and MADANI, 2018). 

These are not only the main modulators of water security, but also affect the average and 

variability of hydroclimatic systems, causing a series of socioeconomic and environmental impacts 

(HUSSEN; MEKONNEN; PINGALE, 2018; TAN and FOO, 2018). 

 
1As stated by IBGE (2022), based on the 2012 demographic census, 61% of the Brazilian population were urban. 
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The above-mentioned modulators of water security have a considerable influence on land 

use/cover dynamics, mainly in the reservoir flow, with an increase or decrease in the volume of 

water (MARQUES, GUNKEL, and SOBRAL, 2019), an increase in changes in the socio-natural 

scenarios (ZHUANG et al., 2017). 

Increased temperatures, droughts, and floods affect global hydrology and have the potential 

to alter water availability for the water-food-energy nexus (GESUALDO et al., 2019; SOLAUN 

and CERDÁ, 2019), in addition to contributing to the occurrence of multiple stressors that 

compromise the integrity of water resources and aquatic ecosystems (Molina-Navarro et al., 2018), 

which places water security among the main socioeconomic and environmental challenges 

nowadays (BAJRACHARYA et al., 2019). 

Both climate change and land use can affect several demographic parameters and there may 

be interactive effects (OLIVER; MORECROFT, 2014), in complex ways through multiple 

hydrological, biophysical, and biochemical feedback (JIA et al., 2022). Extensive studies have 

been devoted to climate and land use/cover changes impacts on water resources management in 

different regions around the world (ABDO et al., 2009; NÓBREGA et al., 2011; BRAVO et al., 

2014; KUNDU, KHARE, and MONDAL, 2017; GASHAW et al., 2018; ZHUANG et al., 2018; 

OLIVEIRA et al., 2019).  

The simultaneous effects of these two major global problems, in a multi-model ensemble 

approach, have not yet been extensively investigated, and proper research highly demands finding 

their relationships and impacts on the future (THAPA, 2021).  

Therefore, even being challenging, it's imperative to assess the sensitivity and vulnerability 

of their impacts on water resources, as they are key factors in the dynamics of hydrological 

processes (MARHAENTO; BOOIJ; HOEKSTRA, 2018), to support the environmental and water 

resources policy decision-making (ABERA et al., 2019). 

In addition to the lack of knowledge on how to address the future challenges on ecosystem 

services listed by Francesconi et al. (2016), it is challenging to couple spatially explicit, hydrologic, 

and climatic modeling approaches (which converge to great potential) to assess the independent 

and/or combined impact of these two stressors on water resources (JONES and ELLIOTT, 2007; 

ZHANG et al., 2014; ABBASPOUR et al., 2015; FARJAD et al., 2017; FU et al., 2019). 

This aims to support water resources decision-makers (MONTENEGRO et al., 2014; 

EDUARDO et al., 2016), since the prediction of climate change impacts, can generate previously 

mitigating measures to mainly avoid the desertification of risk areas in Brazil (LINS, 2022). 
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Therefore, it’s in this context, that this research was directed, developing hydrological, 

climate, and land use change assessments on water resources through coupling different modeling 

approaches and multi-model ensemble. 

This doctoral thesis aims to present information regarding the space-time dynamics of 

climate and land-use change, which can be fundamental for the development of flood warning 

systems for governmental agencies (e.g., the Integrated Disaster Information System – S2ID, a 

platform of the National System of Protection and Civil Defense). Through such systems, it will 

be possible to automatically inform (via SMS, emails, and phone calls) the estimated occurrence 

of possible floods in risk areas. 

By proposing the development of warning systems to anticipate floods and flooding, this 

research seeks to contribute to addressing the challenge of the increasing occurrence of almost 39 

thousand natural disasters in Brazil between 1991 and 2012 (84% of these disasters are associated 

with excess and lack of water), affecting approximately 127 million people and causing losses of 

R$ 182.7 billion (SOUZA & OLIVEIRA, 2019). 

It is expected that the design of these alert systems will contribute to anticipating the 

occurrence of natural disasters (such as floods), thus allowing mitigation actions to be anticipated 

by the competent sectors (e.g., National Center for Risk and Disaster Management – CENAD) and 

informing the population so that they can safeguard their property and lives. This will reduce the 

vulnerability of communities, the economy, and infrastructures to climate risks and natural and 

anthropogenic disasters. 

Furthermore, this doctoral thesis aligns with the United Nations’ Sustainable Development 

Goals (SDGs), particularly SDG 6: Clean Water and Sanitation, which aims to ensure water and 

sanitation availability and sustainable management for all. 

Moreover, this research is conducted as part of the ongoing multilateral BRICS research 

project, titled “Integrated Water Management Model for Brazil, India, and South Africa under 

climate change scenarios” (BURI et al., 2022). This project aims to develop a WebGIS 

environment, an Integrated Water Resource Management (IWRM) Modeling Framework, as stated 

by Ortiz-Partida et al. (2020), as an excellent approach to cope with future climate uncertainties.  
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1.1 Research hypothesis 

• This research assumes the intensification of climate and land-use changes will directly 

impact water availability in the São Francisco River basin. 

 
1.2 Objetives 

1.2.1 General objetive  

• The main goal was to investigate/analyze the space-time dynamic of hydrological processes 

and trend impacts of future climate and land use changes on water resources for the São 

Francisco River basin, in Brazil. 

 

1.2.2 Specific objetives  

a) Identify, on a regional scale, which environmental and socioeconomic factors are related to 

the dynamics of land use change, and analyze the location, intensity, and direction of 

change, using the LuccME spatially explicit land change modeling framework, considering 

the factors previously selected. 

b) Project land-use scenarios through a land-use spatially explicit model for the São Francisco 

River basin. 

c) Analyze the long-term trend of gridded precipitation and temperature data available using 

a bias-corrected multi-model and four different trend tests in annual, dry, wet, and pre-

season periods. 

d) Assessment of climate and land-use change scenarios impacts on water resources under two 

RCPs. 

 

1.3. Thesis structure  

To answer the aforementioned established objectives, a series of studies were developed 

that are presented in chapters II-IV in the form of articles, written based on the following proposed 

manuscripts to be submitted for publication, as described below, and overviewed in Figure 12: 

Chapter II: Spatially explicit land-use scenarios for the São Francisco River Basin, Brazil. 

In this chapter, the LuccME modeling framework was applied to set up a LULC model used to 

project future pathways considering three scenarios, namely: the sustainable development scenario 

(SSP1 RCP 1.9), the middle of the road scenario (SSP2 RCP 4.5), and the strong inequality scenario 

 
2Figure 1 presents a global overview of the topics covered in each chapter, focused on different proposed specific goals 
using different methodologies and correspondent databases. A summary of their respective contributions and the 
relationship between them is provided below at the end of this introductory chapter. 
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(SSP3 RCP 7.0). The projected scenarios represent a diverse range of biophysical, environmental, 

and socioeconomic assumptions about the future and capture a broad range of regional and gridded‐

level uncertainties typical in the current model, in line with the SSPs and RCPs described by 

Bezerra et al. (2022). 

Chapter III: Multi-model ensemble for long-term statistical trend analysis of observed 

gridded precipitation and temperature data in the São Francisco River Basin, Brazil. This chapter 

analyzed the various uncertainties in the precipitation and temperature datasets of NASA Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) under two Representative 

Concentrative Pathways (RCPs) 4.5 and 8.5 over the São Francisco River Basin, in Brazil. A total 

of nine Regional Climate Models (RCMs), namely, CAnESM2, CM5A-MR, CSIRO, EC-EARTH, 

GFDL-ESM2M, HadGEM2-ES, MIROC5, NORESM1, and SHMI-ESM, were ensembled using 

Reliable Ensemble Averaging (REA) approach. After that, the data were revised using the CMhyd 

model adopting the Linear Scaling bias correction technique of the ensemble climate model, 

followed by a trend analysis of precipitation, and the maximum and minimum temperature in the 

São Francisco River Basin. For this, were used four different no-parametric trend tests (Mann-

Kendall, Mann-Kendall Test of Pre-Whitened, Bias Corrected Pre-whitening, Spearman 

correlation) in annual, dry, rainy, and pre-season periods (each one of) ten selected grids through 

Principal Component Analysis (PCA) methodology to detect trends in extreme climatic indices in 

the São Francisco River basin. To generate spatial plots, the inverse distance weighting (IDW) 

geostatistical interpolation technique was used by considering the Z-value of respective trend tests. 

Chapter IV: Climate and land-use change impact assessment on water resources in the São 

Francisco River basin. The SWAT hydrological model used in this chapter was calibrated as part 

of the ongoing multilateral BRICS research project. In this chapter a computer‐based, geospatial 

SWAT2009_LUC tool, was used to integrate into a new and single shapefile of all developed three 

scenarios for dynamically updating land use changes being coupled to the ensembled climate data, 

aiming to evaluate the combined impacts of land-use change and climate change on water resources 

in the São Francisco River basin, considering two scenarios of greenhouse gas emissions: RCP 4.5 

and RCP 8.5, and three-time periods: short-term (2011 to 2040), medium-term (2041 to 2070), and 

long-term (2071 to 2100). 

Finally, Chapter V: the thesis concludes by providing a summary of the key findings, 

drawing overarching conclusions, and presenting recommendations as a way forward for future 

works. 
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Figure 1: Overview and relationship of the main topics covered in this Ph.D. thesis 

 

Climate and land-use change impact assessment 
on water resources in the São Francisco River 
Basin  
-Techniques:  

a) Calibrated SWAT model (BRICS project) 

b) Multi-model Ensemble building 

c) Bias correction (linear scaling technique) 

d) Future projections 

e) Final simulations. 
 

 

 

Chapter IV 

Multi-model ensemble for long-term 
statistical trend analysis of observed 
gridded precipitation and temperature data 
in the São Francisco River Basin, Brazil  
 
-Techniques:  
1) Reliable Ensemble Approach (REA) methodology  

a) Performance Indicators 
b) Weigh of the 9 RCMs. 
c) MME (Multi Model Ensemble) 
d) BIAS Correction 

 
 
2) Trend tests:  Precipitation and Temperature (TX, 
TN) 
-Methods/techniques: 

a) Mann-Kendall Test 
b) Spearman correlation 
c) Mann-Kendall Test of Pre-Whitened 
d) Bias Corrected Pre-whitening

General introduction (with the hypothesis, main and specific goals), and literature review 

Chapter V: CONCLUDING REMARKS 
a) Satisfactory performance of the developed 
land-use change model to project land-use 
scenarios. 
b) An increase in temperature and 
precipitation by the end of the 21st-century. 
c) A strong indication that land-use and 
climate change will cause significant 
changes in the SFRB. 

Chapter II 

Spatially explicit land-use and land 
cover scenarios for the São Francisco 

River Basin, Brazil 
-Techniques:  
1) LuccME modeling framework. 

a) Spatial Database Building  
b) Components 
c) Model parameterization 
d) Land-use scenarios (2020 and 2050) 

• SSP1 RCP 1.9  
• SSP2 RCP 4.5  
 SSP3 RCP 7.0

Chapter III 

APPENDICES AND ANNEXES

Chapter I 
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1.3 LITERATURE REVIEW 

1.3.1 Integrated water resources management and water security concepts  

The global surface freshwater availability is estimated between 9,000 and 14,000 km3, but 

only 4,200 km3 is available for consumption and other related domestic activities (CANTÚ-

MARTÍNEZ, 2012). Even so, worldwide societies face increasingly complex water-related 

problems that are characterized by high uncertainty about their sources and effects at diverse levels, 

scales, and temporalities (INGOLD and TOSUN, 2020). 

About a billion people in developing countries do not have access to clean and safe drinking 

water (SILVA et al., 2016), and a worldwide synthesis of water security considering human and 

biodiversity perspectives carried out by Vörösmarty et al. (2010), found that nearly 80% (4.8 

billion) of the world’s population lives in areas where either incident human water security or 

biodiversity threat exceeds the 75th percentile.  

These problems range from water scarcity, floods, droughts, or water pollution, being 

heavily interrelated with issues of biodiversity, climate change, land use/cover changes, and socio-

economic issues (VOGEL et al., 2015). Thus, water depletion and pollution are the serious 

challenges of the 20th century due to anthropogenic, and climate change (TIWARI et al., 2021).  

Nonetheless, the rapid development of land use and climate change is expected to impact 

water insecurity to 1.8 million people by 2025 (WWDR, 2015), and affect aquatic ecosystems, 

landscape patterns and functioning of ecosystems, the ability of hydrological processes regulations 

in arid and semi-arid regions due to their fragile climatic conditions (GEBREMICAEL et al., 2013; 

GWATE et al., 2015; SHIRMOHAMMADI et al., 2020). 

Aiming to minimize the problem of water resources management, the World Summit on 

Sustainable Development in 2002, proposed an answer having appealed for the development of an 

integrated water resources management approach (HERING and INGOLD, 2012). 

The IWRM approach is currently implemented as the dominant paradigm in developing 

countries (FULAZZAKY, 2014), for better coordination in an integrative manner during water 

resources management together with other natural resources (INGOLD et al., 2016). 

This process promotes the coordinated development and management of water, and related 

resources, to maximize the resultant economic and social welfare equitably without compromising 

the sustainability of the vital ecosystem. In the past decade, the most traditional dominant discourse 
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of the IWRM approach has been challenged by water security which has emerged as a new 

narrative on water governance (GERLAK and MUKHTAROV, 2015). 

The concept of water security is a multi-faceted one and is interrelated with the broader 

frameworks and concepts related to water, characterizing the interactions between hydro-climatic 

conditions, ecosystem functioning, and societal needs (SCOTT et al., 2013). 

Among several proposed definitions (FALKENMARK and LUNDQVIST, 1998; LAUTZE 

and MANTHRITHILAKE, 2012; COOK and BAKKER, 2012), the concept of water security goes 

beyond the mere balance between water availability and water demand, having availability as the 

common denominator, access to an adequate quantity and quality of water for the population and 

industry, in addition to an acceptable level of risk due to extreme hydrometeorological impacts and 

environmental deterioration (ARREGUIN-CORTES et al., 2019). 

As a common denominator among all proposed definitions and their related methodologies, 

consider the availability and access to an adequate quantity and quality of water for the population 

and industry, along with an acceptable level of risk from the impacts of hydro-meteorological 

extremes and environmental deterioration (ARREGUIN-CORTES et al., 2019). 

The concept of water security can be seen as an extension of sustainable development 

thinking to water resources with a focus on the quantity and quality of water supply for societal 

and ecological needs (GERLAK and MUKHTAROV, 2015). 

This brings together concepts related to water characterizing the interactions between water 

conditions, ecosystem functioning, and societal needs (SCOTT et al., 2013). Thus, water security 

consists of having access to water in acceptable quantity and quality for health, livelihoods, 

ecosystems, and production, along with an acceptable level of water-related environmental and 

economic risks to people (GREY and SADOFF, 2007), besides water vulnerability in the face of 

threats from extreme weather events (GUNDA; BENNEYWORTH; BURCHFIELD, 2014).  

This is an acceptable level of water-related risks for humans and ecosystems, together with 

water availability in sufficient quantity and quality to support livelihoods and ecosystem services, 

which makes water security one of the greatest socio-environmental and economic challenges of 

the 21st century (XIA et al., 2007; BAKKER, 2012; BOGARDI et al., 2012; SRINIVASAN; 

KONAR; SIVAPALAN, 2017). 

However, applications of this type of study on a regional scale are also necessary, since 

achieving water security requires coordinating actors within the context of overarching water-
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related standards and targets which may be optimally designed and set by higher orders of 

government (BAKKER and MORINVILLE, 2013). 

Thus, in Brazil, the IWRM approach is based on river basin-scale management, and due to 

the multiple dominance of water bodies in a single Brazilian river basin, provided in Federal Law 

no. 9 433/1997, the harmonization of federal and state laws is required. 

In addition, are also required the formulation of norms and procedures of the different water 

resources management agencies, aiming to meet the water security index for all the Brazilian micro 

basins, recently established by the National Water and Sanitation Agency from Brazil (ANA, 

2019). 

This will help to guide the investments of the Brazilian Water Security National Plan 

recently introduced in 2014 (RODRIGUES et al., 2014), to prioritize the investment pathways in 

different sectors closely dependent on water (TEIXEIRA et al., 2021). 

 
1.3.2 Spatially explicit land-use changes 

The land use/land cover (LULC) changes have been identified as the main driving forces 

of local, regional, and global environmental changes (VERBURG et al., 2015), and can be 

considered the primary force drive of the transformations of rural systems, bringing direct 

socioeconomic and environmental effects on rural sustainability (LONG and QU, 2018). For 

example, the need to meet the growing energy and food demand has created adverse impacts on 

the environment (VAN ASSELEN and VERBURG, 2013), especially in developing countries 

(including Brazil), that are striving for economic growth to sustain an ever-growing human 

population. 

The land use/cover changes for the development of industrial activities, urbanization, 

intensification of agricultural practices, pasture, and mining, without any planning implies 

aggression to the environment (AREENDRAN et al., 2013 and KARAKUS; CERIT; KAVAK, 

2015), reduction of agricultural areas through the depletion of the productive capacity of the soil 

(RAWAT and KUMAR, 2015). 

Vegetation cover is strongly associated with water quality in two main ways (FERREIRA 

et al., 2019): i) reduction of soil erosion and sediment load and ii) filtering of contaminants by 

riparian vegetation. Water plays a crucial role in maintaining water availability, nutrient cycling, 

soil protection, temperature regulation, and maintenance of the water cycle, restoring water to the 

atmosphere through evapotranspiration (PONTES et al., 2019). 
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However, knowledge of land use/cover is of strategic importance for any country as it 

provides spatial information for a better understanding of the spatio-temporal dynamics of the 

landscape, changes, and interactions between anthropogenic/industrial activities and natural 

phenomena (KARAKUS; CERIT; KAVAK, 2015). 

The knowledge referred to above, assists in the definition of natural resource management 

policies (MARENGO et al., 2018; ARMENTERAS et al., 2019), management of agricultural 

practices and urbanization processes, monitoring of habitats and ecosystem services (MACEDO et 

al., 2018), assistance in the management of water salinity (SINGH, 2018).  

This includes the understanding of the soil water balance (VIOLA et al., 2014), which is 

directly affected by land use/cover changes, through runoff, discharge, low flow occurrences, and 

other hydrological important processes (GUZHA et al., 2018). 

The increase of the computational capacity for spatial data acquisition and GIS advances, 

for high spatial-temporal resolution processing of satellite images, has allowed the development of 

functional models for more routine and consistent studies, including the simulation and modeling 

of dynamic land use/cover processes at different spatial and temporal scales (YANG et al., 2003; 

ALMEIDA et al., 2005; DEZHKAM et al., 2017). 

For example, the application of remote sensing techniques (use of geospatial images to 

detect changes using multispectral satellite images) allows to support research (identify, map, and 

monitor), socio-environmental planning (e.g., the Spatio-temporal dynamics of land use/cover 

changes) in less time, low cost and with better precision (RAWAT and KUMAR, 2015). 

And when coupled with GIS (SILVA, 2007) they have shown great potential to assist in 

the discrimination of elements of the landscape, in the planning and regulation of environmental 

changes, studies of land use and occupation, mapping of natural resources, spatialization of 

preservation areas (ZEILHOFER and TOPANOTTI, 2008), details on the selection of agricultural, 

urban and/or industrial areas (WONDRADE; DICK; TVEITE, 2014).  

Land use/land cover (LULC) change models are powerful tools used to understand and 

explain the causes and effects of LULC dynamics, and scenario-based analyses with these models 

can support land management and decision-making better (REN et al. 2019).  

Due to their vital role as computational laboratories for experiments to explore land system 

behavior (ROUNSEVELL et al., 2012), these can provide a framework to address and separate the 

complex suite of biophysical and socioeconomic factors (VERBURG et al. 2004).  
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These facts make them useful research tools in land management, forecasting multiple land-

use change conversions’ effects (the rate, quantity, extent, and location) on climate change, 

landscape changes, carbon cycling, biodiversity, water budgets, and the provision of other critical 

ecosystem services (ALEXANDER et al., 2017). They also can support the analyses of potential 

land-use changes under multiple scenarios and provide insights into land-use policymakers. 

A wide array of land-use change models is currently available and under development 

worldwide; and even ranging from inductive or deductive, pattern- or agent-based, dynamic, or 

static, spatial, or non-spatial, and regional or global (REN et al., 2019). These modeling approaches 

usually are implemented jointly and iteratively in practice. 

Accordingly, among the five principal approaches reviewed by Ren et al. (2019), cellular-

based models (combined with other modeling approaches to improve their availability and 

performance) have been widely used because of their simplicity, flexibility, and intuitiveness in 

reflecting spatiotemporal changes in land use patterns. 

Besides Markov chains and logistic regression employed to quantify future land changes, 

and the spatial patterns determined by cellular models (ARSANJANI et al., 2013), neural networks 

and support vector machines are some novel techniques merged with cellular models to 

parameterize the various variables and define the transition rules (CHARIF et al., 2017). 

Furthermore, novel modeling frameworks, e.g., LANDSCAPE (LAND System Cellular 

Automata model for Potential Effects) and LLUC-CA (Local Land Use Competition Cellular 

Automata model) were developed to address issues such as allocation sequences and local effects 

within the neighborhoods (KE et al., 2017; YANG et al., 2016), to focus research on cellular-based 

models. 

 

1.3.3 Climate change impacts 

The Intergovernmental Panel on Climate Change (IPCC, 2001), the main and worldwide 

scientific reference on the subject, defines the term “climate change” as a statistically significant 

variation in the average conditions of the climate or in its variability, which persists for a long 

period. It may arise from natural processes or persistent anthropogenic changes in the composition 

of the atmosphere or land use.  

This dynamic force that transforms many aspects of the environment has the potential to 

impose additional pressures on almost all regions, can influence the configuration of regions of the 
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Earth, the structure of the soil, and consequently the occurrence of natural processes, such as 

extreme climatic, changes in solar radiation, and the Earth's orbital movements. 

In recent decades, climate change has been one of the most and world widely topics debated 

by the scientific community, public decision-makers, and society in general. The concern with the 

issue is linked to the possible impacts that this phenomenon can cause on natural and 

socioeconomic systems (FERREIRA et al., 2018). 

The central concern with the issue is linked to the possible impacts that this phenomenon 

can have on natural and socioeconomic systems (FERREIRA et al., 2018). According to Liu et al. 

(2017), climate change has been recognized as one of the main 21st-century environmental 

problems throughout the world, as it causes major impacts on water resources and agricultural 

productivity, especially in arid and semi-arid environments.  

For what is high on the agendas of many international and national organizations, ranging 

from non-governmental organizations to the United Nations, international scientific research 

institutions, universities, and society in general. 

The climate changes already observed and projected (increase in the average temperature 

of the planet, higher frequency of tropical storms, floods, heatwaves, droughts, snowstorms, 

hurricanes, tornadoes, and tsunamis) (WOOLWAY and MERCHANT, 2019), are making the 

hydrological cycle less predictable global impact and affected spatial-temporal variability, the 

intensity of rain events, and the associated risk of floods or droughts (FONTOLAN et al., 2019). 

This may directly impact sectors that are heavily dependent on water, like domestic and industrial 

supply, generation hydropower, and agricultural practices (ABERA et al., 2019; LUO et al., 2019). 

The expansion of energy consumption activities in the industry, places Brazil as the 9th 

largest consumer of electricity, with around 68% of installed capacity based on hydroelectricity 

(BODUNRIN et al., 2018; KUWAJIMA et al., 2019), and the São Francisco River basin has 94% 

of the installed hydroelectric capacity in Northeast Brazil, which represents 70% of the total 

electricity generation in this region (MARQUES; GUNKEL; SOBRAL, 2019).  

However, this generation capacity is threatened due to climate change (JONG et al., 2019), 

which requires greater investment to insert renewable sources of energy generation for electricity 

supply (MENDES; BELUCO; CANALES, 2017). 

The global average surface temperature (continent and ocean), which increased by 0.85 °C 

between 1880-2012 (BERLATO and CORDEIRO, 2018), will affect evapotranspiration and 
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concomitantly the water demand for crops (GONDIM et al., 2018), the poor spatial and temporal 

distribution of extreme weather events (FONTOLAN et al., 2019), reduction in the number of 

precipitation days (CARVALHO et al., 2020), significant change in the global hydrological cycle 

(ARNELL et al., 1999; CHRISTENSEN et al., 2004; ABDO et al., 2009) and threats to 

biodiversity (NASCIMENTO et al., 2019). 

Summed the above-mentioned impacts, will increase inevitable consequences for the 

availability of freshwater for people and ecosystems in most regions that already suffer from water 

shortage (UKKOLA and PRENTICE, 2013), and more severe droughts in southwestern Australia, 

the southwestern United States, the Mediterranean (JENKINS and WARREN, 2015).  

This will be also impactful in northeastern Brazil, where the estimate of economic losses 

caused by water-related disasters, between 1994 to 2015, was around R$ 182.7 billion 

(KUWAJIMA et al., 2019). 

According to Lacerda et al. (2016), evidence of climate change was found in the State of 

Pernambuco showing increases in air temperature of up to 4 °C in the maximum daily temperature 

between 1961 and 2009; period in which there was an average reduction of 275 mm in precipitation 

(corresponding to 57% of the total) with the increase in the maximum periods of drought, from 20 

to 35 days (NOBRE, 2011).  

However, due to global warming in Brazil (which can increase from 3ºC to 6ºC by 2100, 

especially in North and Northeast regions), a situation that would be even more critical with a 

possible bad distribution of rainfall that can reach 45% (JONG et al., 2018), and if combined with 

deforestation, burning in the biome, intensive land use/cover changes and deforestation 

(responsible for most greenhouse gas emissions in Brazil), can make northeast Brazil one of the 

most vulnerable in the world to climate change (MARENGO; TORRES; ALVES, 2017).  

Its impacts on the economic performance of the agricultural sector and migration in the 

Brazilian semiarid can create situations of socioeconomic vulnerability (BARBIERI et al., 2010; 

TORRES et al., 2012; GONDIM et al., 2018), and the flow of currents in semiarid regions (such 

as the São Francisco river basin) is particularly vulnerable to more frequent and intense prolonged 

droughts due to changes climate (JONG et al., 2019), elements that require appropriate and 

consistent adaptation policy design, in response to the effects of climate change (as opposed to 

mitigation, which is what we do to prevent further climate change). 
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Founded in 1988 by the World Meteorological Organization (WMO) and the United 

Nations Environment Program (UNEP), the Intergovernmental Panel on Climate Change (IPPC), 

developed through data from the Coupled Model Intercomparison Project Phase 5 (CMIP 5) inter-

comparison project, four climate change scenarios, representing four target levels of radiative 

forces - which take into account the conditions of air temperature, radiation, rain, and air humidity, 

the so-called Representative Concentration Pathways (RCPs), namely: RCP 2.6 (very low priority 

level), RCP 4.5, RCP 6.0 (medium stabilization scenarios) and RCP 8.5 (scenario very high 

emission) corresponding to approximately 490, 650, 850, and 1,370 ppm, respectively, between 

1961 and 2100 (TAN et al., 2014; VAN VUUREN et al., 2011). 

• RCP 2.6 is a "very stringent" pathway. This was developed by the IMAGE (Integrated 

Model to Assess the Global Environment) modeling team at PBL Netherlands 

Environmental Assessment Agency, is the most optimistic, which will increase linearly 

until 2060, and will decrease and stabilize at the end of the century (CHOU et al., 2014). 

• RCP 4.5, developed by the modeling team at the JGCRI (Pacific Northwest National 

Laboratory’s Joint Global Change Research Institute) in the USA, is considered an 

"intermediate" scenario, based on obtaining global forcing radiation of 4.5 Wm-2 and a 

stabilized CO2 concentration of 650 ppm by the end of the century. 

• RCP 6.0, developed by the AIM modeling team at NIES (National Institute for 

Environmental Studies) in Japan, is a stabilization scenario in which the total radiative force 

is stabilized shortly after 2100, through the application of a series of technologies and 

strategies. to reduce greenhouse gas emissions.  

• Finally, the radiative forcing RCP 8.5, developed using the MESSAGE model and the 

IIASA (International Institute for Applied Systems Analysis) integrated assessment 

framework in Austria, is a "pessimistic" scenario, characterized by an increase in solar 

radiation to 8.5 Wm-2, with a probability of CO2 concentration reaching 1370 ppm and 

warming of approximately 4ºC until the end of the 21st century (GESUALDO et al., 2019).  

 
1.3.3.1 Bias correction methods 

The well-known four climate change scenarios, the so-called Representative Concentration 

Pathways (RCPs), were developed based on the driving force, such as population growth, socio-

economic development, and greenhouse gas emissions (MCGUIRE et al., 2001 and WILLEMS et 
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al., 2011) to examine their effects on either, hydrology and water resources in the global-, regional-

, and local-scale (FEREIDOON et al., 2018). 

Global Climate Models – GCMs or General Circulation Models, Atmosphere-Ocean 

Coupled Global Circulation Models – AOGCM, or even Earth System Models – ESM, are highly 

complex global-scale physic-mathematical representations of the terrestrial climate system, and 

their resolutions are generally too coarse to be useful for assessment of the future climate changes 

at local scales, for example, impacts on the watersheds (ANDRADE et al., 2021). 

To obtain this information, the IPCC uses coupled global models (ocean-atmosphere) 

aiming at a better scientific understanding of climate changes around the globe, still needing 

relevant projections on a regional scale (ALVES and MARENGO, 2010) as the outputs from 

GCMs and RCMs – such as precipitation and temperatures data – generally contain systematic 

errors and cannot be used directly in hydrological modeling, since they can generate significant 

deviations between simulated and observed data (CHEN et al., 2016 and DE OLIVEIRA et al., 

2017).  

The general procedure for assessing the impact of climate change on water resources is to 

first obtain climate change data through Global Circulation Models – GCM3; small-scale climate 

projections (from global to regional scale – e.g., Eta Regional Climate Model4) (MARENGO et 

al., 2012 and FONTOLAN et al. 2019), followed by the insertion of the corrected data in the 

calibrated and validated hydrological model. 

All three of these processes involve, for example, the uncertainties of the climate projection 

(GIORGI; MEARNS, 2002 and TEBALDI et al. 2005), the uncertainties in spatial resolutions that 

are excessively coarse (ranging from 100 to 300 km), and seasonal variations incorrect due to 

conceptual errors and discretization, which can generate significant deviations between observed 

and simulated data (underestimation or overestimation, respectively) (CROSBIE et al., 2010 and 

SORRIBAS et al., 2016), limiting their ability to assess the impacts of climate change on a regional 

scale (WOOD et al., 2004; COOLEY and SAIN, 2010; CHOU et al., 2014). 

 
3Also known as Global Climate Models – GCM or General Circulation Models, Atmosphere-Ocean Coupled Global 
Circulation Models – AOGCM, or even Earth System Models – ESM, are physic-mathematical representations of the 
terrestrial climate system based on laws of conservation of mass, energy and momentum, and laws of thermodynamics 
and radiation (LIMA and AGHAKOUCHAK, 2017). 
4Originally developed by INPE to provide projections of climate change (and its’s impacts) in South America in high 
resolution. The model is configured with 20 km horizontal resolution and 38 layers in the vertical direction. Scale 
reductions are driven by global climate models MIROC5 and HadGEM2-ES, in the RCP 4.5 and RCP 8.5 greenhouse 
gas emission scenarios for the period between 1961 and 2100 (WANDERLEY, 2020). 
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However, this means that the outputs of the Global Circulation Models are not 

recommended for direct use in the study of regional hydrology, due to the uncertainties of the 

hydrological model parameters that arise from the equifinality of the model's parameter sets 

(BEVEN and FREER, 2001), quality and quantity of the available observation data used and the 

choice of the calibration period of the adopted hydrological model (SORRIBAS et al., 2016). 

Within this context, Regional Climate Models (RCMs: e.g., Eta) nested to Global Climate 

Models (GCMs: e.g., HadGEM2-ES and MIROC5) must be used to assess the potential impacts of 

climate change at regional scales (FONTOLAN et al., 2019). 

Among several methods to minimize the uncertainties of significant deviations between the 

observed and simulated data, nesting of the Regional Climate Models to the General Circulation 

Models (COOLEY et al., 2010; CHOU et al., 2014; GESUALDO et al., 2019), distribution 

mapping ("quantile-quantile") (SORRIBAS et al., 2016), spatial downscaling (dynamic or 

statistical) (CHEN et al., 2011), and bias correction (trendline) from Global Circulation Models 

data (MARCHANE et al., 2017), are some examples of techniques that can be useful to provide 

adequate spatial resolution and more detailed regional information for studies of climate change 

impacts on hydrological processes at a regional scale. 

 

1.3.4 Mathematical and hydrological modeling 

Despite the availability of more complex and sophisticated tools, due to the great interest 

in understanding global hydrology coupled with the analytical difficulties due to the complexity of 

representing the dynamics of the different processes that occur at the watershed level, several 

researchers and government agents have resorted to modeling tools (MCINTYRE et al., 2014). 

They allow simplifying reality to isolate the most relevant variables and try to predict the 

phenomenon that interests us for decision-making. 

Specifically, physical-based hydrological modeling tools provide information that is 

normally unavailable, given the technical difficulties and high costs of in situ data measurement, 

especially in the case of continuous monitoring on a large scale.  

The models (i) assist in the understanding of hydrological processes and their relationship 

with other geophysical processes, and (ii) serve as a basis for Hydrological Forecast Systems aimed 

at reducing the vulnerability of the local population to extreme events. 
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The development of hydrological models has advanced a lot since the 1960s when a digital 

revolution took place worldwide that enabled the integration of different components of the 

hydrological cycle and simulation of almost the entire hydrographic basin scale (SINGH and 

WOOLHISER, 2002).  

These are in constant development due to the increase in computational capacity, the new 

availability of remote sensing data (to feed these tools), and their integration with geographic 

information systems (ROUHOLAHNEJAD et al., 2012; LOPES et al., 2018), to quantify water 

availability under current and future conditions, to subsidize policies for integrated natural 

resources management. 

There are currently hundreds of models available, which makes the choice a difficult 

process, that requires parsimony between the complexity of the model, its capacity, and its 

robustness (EISENBIES et al., 2007).  

Undoubtedly, the effectiveness of hydrological modeling largely depends on the choice of 

the appropriate hydrological model, whose selection depends on the research objectives, the 

availability of input data for its running, and the uncertainties in interpreting the output results 

obtained. Hence, hydrological models can be classified according to the types of variables used 

(stochastic or deterministic), the form of data representation (continuous or discrete), the existence 

or not of spatial relationships (lumped or distributed), and the type of relationships between the 

variables (empirical or conceptual/physical-based models) (BERTONI and TUCCI, 2007; FAN et 

al., 2021). 

Given the physical processes’ representation and computational efficiency recently 

improved, these models have offered simulation capabilities on a local-, regional-, continental-, or 

even global-scale distributed information for water resource management (GAO et al., 2010; 

YAMAZAKI; ALMEIDA; BATES, 2013; SOOD and SMAKHTIN, 2015; SIQUEIRA et al., 

2018), a fact that has reached some local relevance, as described in the “hyper-resolution” initiative 

by Wood et al. (2011) and Bierkens et al. (2015).  

Worldwide, to date, there are numerous hydrological models developed to assess climate 

change (SORRIBAS et al., 2016), land use/cover changes (CHU et al., 2010; KUNDU et al., 2017), 

including the impacts (of these stressors) on water resources (WIJESEKARA et al., 2014; 

DOTTORI et al., 2016; FALTER et al., 2016; KOMI et al., 2017; FLEISCHMANN, PAIVA, and 

COLLISCHONN, 2019), space-time connectivity of hydrological processes (KAUFFELDT et al., 



 

 

41 
 

2016), biogeochemical cycles - natural processes in which chemical elements circulate between 

living beings and the environment (ZHANG et al., 2002), water quality, to assess the effects of 

diffuse or even punctual pollution, through the simulation of nutrient cycles, effects of agricultural 

pesticides, discharge of sewers and self-cleaning in water bodies (HESSION and STORM, 2000; 

FAN et al., 2015). 

Among several hydrological models that have been developed to be used to aid water 

resources management (BONUMÁ et al., 2015; DEVIA, GANASRI, and DWARAKISH, 2015); 

the SWAT (Soil and Water Assessment Tool) (ARNOLD et al., 1996; ARNOLD et al., 1998) has 

been highlighted by several studies (DOUGLAS- MANKIN et al., 2010; BRESSIANI et al., 2015; 

QIN et al., 2018; ANDRADE et al., 2018), as being computationally efficient to simulate medium 

and large hydrographic basins (>1 000 sq km) and continuous in time (ARNOLD et al., 1996). 

 
1.3.4.1 The Watershed Model – Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT), is a public domain, physical-based model 

(its equations are based on physical laws), semi-conceptual, distributed (its parameters depend on 

space or time), continuous over time (by simulating hydrological processes for periods greater than 

50 years) originally developed by the United States Department of Agriculture, Agricultural 

Research Service (USDA-ARS) and Texas A&M AgriLife Research (ARNOLD et al., 1998), and 

freely available at: http://swat.tamu.edu/.  

History of its first version emerged in the early 1990s, as a result of SWRRB (Simulator for 

Water Resources in Rural Basins) model improvement (ARNOLD and WILLIAMS, 1987), which 

is the fusion of models such as Chemicals, Runoff, and Erosion from Agriculture Management 

Systems (CREAMS), Groundwater Loading Effects on Agricultural Management Systems 

(GLEAMS), and Environmental Impact Policy Climate (EPIC). 

The SWAT hydrological model integrates water quality and quantity modules to study the 

environmental impacts at a high level of discretization of the hydrographic basin, based on the 

water balance equation (Equation 3) (ARNOLD et al., 1998), comprising studies of 

evapotranspiration, infiltration, surface, and subsurface runoff (BRIGHENTI et al., 2016), 

transport of pollutants, which include inorganic and organic forms of nitrogen (N) and phosphorus 

(P) (ARNOLD et al., 2012).  

Also, the SWAT hydrological model allows for quantifying the impacts of climate change 

on water resources, the interaction between the aquifer and runoff, evaluation of model parameters 

http://swat.tamu.edu/
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with changes in land use and occupation, simulation of the space-time dynamics of hydrological 

and sedimentological processes for entire river basin (MOLINERO, 2013; ANDRADE; MELLO; 

BESKOW, 2013; ZHOU et al., 2013; ZENG and CAI, 2014; RAPOSO; DAFONTE; BRESSIANI 

et al., 2015). 

SWt =SW0 + ∑ (P – Qs–  ET – Ws – Qgw)t
i=1      Eq. 3 

 
where, SW0 and SWt, correspond to the initial and final soil water content in time t (mm);𝑡𝑡 

is time (days), P is precipitation in time t (mm); Qs is a surface runoff in time t (mm), ET is actual 

evapotranspiration in time t (mm), Ws is percolation in time t (mm); Qgwis the baseflow in time t 

(mm) (ARNOLD et al., 1998; NEITSCH et al., 2011).  

The hydrological component of the model includes runoff subroutines, percolation, 

infiltration, subsurface lateral flow, shallow aquifer flow, and evapotranspiration, as briefly 

schematized in Figure 2 (ABBASPOUR et al., 2015). For the calculation of runoff, the model uses 

the modified SCS formula of Curve Number (USDA Soil Conservation Service, 1972) or the Green 

& Ampt infiltration method (GREEN and AMPT, 1911).  

To calculate the runoff, the equation requires data precipitation daily and calculates 

infiltration as a function of the matric potential of the moisture front and effective hydraulic 

conductivity, assuming the profile of the soil is homogeneous and moisture foregoing is uniformly 

distributed in space (ARNOLD et al., 1995). 

Further, in this study was used the model standard method is the Penman-Monteith-FAO, 

which requires meteorological variables such as solar radiation, temperature, relative humidity, and 

wind speed (NEITSCH et al., 2005).  

 
Figure 2: Scheme of the conceptual model of water balance in the SWAT hydrological model 

Source: modified from Abbaspour et al. (2015) 
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The SWAT hydrological model uses the Curve Number method as the standard one, linked 

to the United States Department of Agriculture (SCS – USDA). From this method it is possible to 

perform an estimation of the surface runoff blade, considering precipitation data and parameters 

that characterize the basin (PRUSKI et al., 2008).  

According to the standardized Curve Number method, the accumulated precipitation varies 

linearly with time, that is, the precipitation intensity is considered constant for a given duration of 

rainfall, as presented in Figure 3. Then, until the time tIa, all the precipitation incident is converted 

into initial abstractions (including surface storage, interception, and infiltration before runoff), and 

after it ends, surface runoff begins (PRUSKI et al., 2008). 

 
Figure 3: Components associated with the SWAT model standard Curve Number method – SCS 

Source: modified from Pruski et al. (2008) apud Andrade (2018) 
And based on The assessment, review, and hydrological reclassification of soils proposed 

by Lombardi Neto et al. (1989), provides a consistent basis for quantifying runoff under various 

types and uses of the soil, which according to Magalhaes et al. (2018), takes into account, in 

addition to hydraulic conductivity, characteristics such as depth, texture, the textural ratio between 

the surface and subsurface horizon and soil permeability influenced by its porosity and clay 

activity, including agricultural management practices (RALLISON and MILLER, 1982), where 

the number of curves varies non-linearly with the soil moisture content. 

Qsup =
(Rd – Ia)2

(Rd – Ia +S )
       Eq. 4 

where: Qsup is the accumulated runoff or excess precipitation (mm H2O), Rd corresponds to 

the precipitated blade for the day (mm H2O), 𝐼𝐼𝑎𝑎 includes surface storage, interception, and 

infiltration before discharge (mm H2O), commonly approximated to 20% of the soil water retention 
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parameter (S), which may vary spatially due to soil change, soil use, management, slope, and time 

due to changes in the content of soil water, which can be determined from equation 5. 

S =25.4 * ( 1000
CN

 – 10)       Eq. 5 

where: S is the parameter of water retention in the soil; CN is a soil permeability function, 

land use, and background water conditions on the ground, taking the moisture condition II with 

tabulated values by the Soil Conservation Service Engineering Division (CRONSHEY, 1986). 

 

1.3.4.2. Hydrologic Soil Groups 

Due to the extremally variable aspect of soil types, a new classification reflecting the 

influence of soil properties over the surface runoff was required by the NCRS method. Thereby, 

SCS (1972) and NRCS (1986) assumed that soil profiles with similar characteristics respond 

similarly to long-term rainfall and high intensity. 

On the other hand, the Curve Number (CN) parameter varies as a function of soil 

permeability, land use, and soil antecedent moisture conditions, whose values are provided through 

tables by the SCS-USDA (placing soils in one of four hydrologic soil groups based on infiltration 

characteristics of the soils: A, B, C, and D, or three dual classes5, A/D, B/D, and C/D for certain 

wet soils that can be adequately drained), whose presented soil types are summarized in Table 1. 

Table 1: Hydrologic soil groups (HSG) based on infiltration characteristics of the soils 

HSG Soil type description (characteristics) Infiltration rate 
 

A 
 

Soils that have low runoff potential and high infiltration rate even 
when thoroughly wetted. Soils are well-drained to excessively drained 
sand or gravels, deep, with low levels of silt and clay. 

 
> 7.62 mm.h-1 

 
B 
 

These types of soils are less permeable than type A, have a moderate 
infiltration rate when thoroughly wetted but with above-average 
permeability, and are moderately well-drained to well-drained soils. 

 
3.81 to 7.62 

mm.h-1 
 

C 
 

These are soils capable of generating above-average flow and low 
infiltration rates. They have a considerable amount of clay and are 
shallow.  

1.27 to 3.81 
mm.h-1 

 
D 
 

Soils with very low infiltration capacity when thoroughly wetted, 
resulting in a high runoff potential. Shallow soils contain expansive 
clays. 

 
< 1.27 mm.h-1 

Source: adapted from Neitsch et al. (2005) and Andrade (2018). 

 

 
5The first letter applies to the drained condition, the second to the undrained. Only soils that are rated D in their natural 
condition are assigned to dual classes. 
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The SWAT model can determine the CN factor daily, with a numerical variation from 1 to 

100, the lower limit being representative of fully permeable soil, and the upper limit (which can be 

considered fully impermeable), of soil that will convert all precipitation in flow throughout the 

entire watershed (NEITSCH et al., 2011). According to Britto et al. (2014), the results of simulation 

with SWAT, which combines climatic, topographic, edaphic, and land use/cover change factors, 

are essential to assess the variation of hydrological conditions and can be applied efficiently in the 

development of basin management plans hydrographic.  

As the flow equation proposed by SCS is an empirical method developed in the 1950s, the 

Curve Number (CN) method (Equation 4), was adapted by Sartori, Lombardi Neto, and Genovez 

(2005) to the Brazilian soil conditions and proposed 19 criteria for HSG soil classification based 

on a survey of 58 soil profile and hydrodynamic data in Brazil (Sartori, 2010), as described in Table 

2. 

  
Table 2: Classification of Hydrologic Soil Groups (HSG) for Brazilian soils. 

Depth to the 
water table 

Restrictive layer  
Further soil characteristics 

 

HSG Hard Moderate 

 
 
 

> 100 cm 
 
 
 

Sandy texture throughout the well-
drained hydromorphic soil profile. 

 
 
 

A 
 
 
 

Sandy or medium texture (< 20% clay) 
down to a restrictive layer. 
Medium to very clayey texture, with low 
colloidal activity and high FeO content 
and/or acidic properties. 

 
 
 
 

> 100 cm 
 
 
 
 

 
 
 
 
– 
 
 
 
 

 
 
 

50 and 
100 cm 

 
 
 
 

Sandy or medium texture down to 
moderate restrictive layer and clay with 
low colloidal activity. 

 
 
 

B 
 
 

Medium to very clayey texture, with low 
colloidal activity and high FeO content 
and/or acidic properties 
Sandy or medium texture down to 
moderate restrictive layer and clay with 
high colloidal activity. 

 
C 
 

 
 
 
 

> 100 cm 
 

 
 
 
 
– 
 

 
 
 
 

≤ 50 cm 
 

Sandy to very sandy texture with abrupt 
clayey change and low colloidal clay 
activity. 

 
 
 

C 
 
 

Medium, clayey, or very clayey texture 
down to moderate restrictive layer and 
low clay colloidal activity. 
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Sandy to very clayey texture with abrupt 
change and high clay colloidal activity. 

 
D 

 
 
 
 
 
 
 
 
 

> 100 cm 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
– 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Absent 
 
 
 
 
 
 
 
 

Clayey/clayey or clayey/very clayey 
texture, with low colloidal activity and a 
textural ratio of less than 1.5. 

 
 
 
 
 
 

B 
 
 
 
 
 

Medium/medium, medium/clayey, or 
clayey/very clayey texture, with low 
colloidal clay activity. 
Clayey/very clayey texture, with low 
colloidal activity, low/medium FeO 
content, and non-acric. 
Incipient B horizon, with morphological 
characteristics similar to the subsurface 
ferralsol horizon. 
Medium/medium, medium/clayey, or 
clayey/very clayey texture, with high 
colloidal clay activity. 

 
C 
 

Medium/clayey, clayey/clayey, or 
clayey/very clayey texture and vertical 
horizon. 

 
D 
 

 
 

> 100 cm 
 
 
 

 
 

50 and 100 
cm 

 
 

 
 
– 
 
 
 

Sandy to very clayey texture, with low 
clay colloidal activity; or medium with 
high clay activity. 

 
C 
 

Medium texture (≥ 20% clay), clayey or 
very clayey, with high colloidal clay 
activity. 

 
D 
 

> 100 cm  
– 

 
– 

 
– 

 
D ≤ 100 cm 

Source: Sartori (2010). 

 

1.3.4.3 Curve Number Values and Antecedent Runoff Conditions 

When HSG is combined with land use/cover, soil treatment, and hydrological surface 

conditions, a hydrological soil-cover complex is formed (SCS, 1972; NRCS, 2002). Vegetation, 

crop residues, exposed soil, water, and impermeable surfaces are all included in land use classes. 

Land treatment is mainly focused on agricultural land and includes both mechanical practices such 

as contouring and terracing, as well as management practices like grazing control and crop rotation. 

Hydrological surface condition is typically labeled as poor, fair, or good. Arranged in three tables 

by the NRCS (2004), the various hydrological complexes are divided based on their characteristics 

in agricultural lands, urban areas, and arid/semiarid rangelands. Interpolated or calculated from 
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rainfall-runoff observances in American watersheds, each complex holds a unique mean CN value 

that mirrors its potential surface runoff.  

Therefore, the CN (Curve Number) is a dimensionless index ranging from 0 (no runoff, S 

= ∞) to 100 (all precipitation becomes runoff, S = 0). In this study, all possible CN values were 

selected from NRCS (2004) tables, and then spatially assigned to hydrological soil-cover 

complexes in a GIS platform. A look-up table was built and used for geoprocessing the combination 

of HSG (assigned by soil type characteristics in Table 3) and land use/cover by MapBiomas 

collection 5.1 (NRCS, 1986). 

 

Table 3: Runoff curve numbers for agricultural lands. CN: Curve Number; HSG: Hydrologic Soil 
Group; HSC: Hydrologic Surface Condition. 

Cover description CN for HSG 
Cover type Treatment HSC A B C D 

Fallow Bare soil – 77 86 91 94 
Forest* – Good 30 55 70 77 

Pasture** – Good 39 61 74 80 
Urban area*** – – 77 85 90 92 
Mosaic**** SR + CR Good 67 78 85 89 

*Woods are protected from grazing, and litter and brush adequately cover the soil. 
**Pasture/grassland having the ground covered higher than 75%, and lightly or only occasionally grazed. 
***Townhouses by average lot size lower than 1/8 acres (506 m2) with 65% average impervious area. 
****Mosaic of agriculture cultivated in straight rows (SR) with pasture/crop residue (CR) cover. 

Source: NRCS (2004). 

 

The runoff potentiality before the surface runoff event is also considered in the SCS–CN 

method by the Antecedent Runoff Condition (ARC) index. Three ARCS are then considered, 

namely: ARC-I, which denotes the dry soils able to be plowed and cultivated; ARC-II, which 

denotes the moderately wet soils, mostly due to flood occurrence; ARC-III, which denotes the 

practically saturated soils, due to antecedent rainy events. 

As stated by Hawkins et al. (2010), the ARC-II is the benchmark condition for obtaining 

the listed CN values (Table 3), whereas the dry (ARC-I) and wet (ARC-III) conditions are obtained 

by empirical equations for defined application ranges. 

Plenty of empirical equation for ARC-I and ARC-III calculation are available in literature 

(Ajmal et al., 2015; Ajmal and Kim, 2015; Arnold et al., 1990; Chow, Maidment and Mays, 1988; 
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Hawkins, Hjelmfelt and Zevenbergen, 1985; Lal et al., 2016; Lal, Mishra, and Kumar, 2019; 

Mishra et al., 2008; Sobhani, 1975; Woodward et al., 2003). 

Most of these equations may be obtained by fitting the parameters of Equation (6) – 

minimizing the sum of squared residuals – using rainfall-runoff datasets monitored or published in 

the literature. Lal, Mishra, and Kumar (2019) performed comparative analyses of different, well-

known methods and three proposed methods, using data from 63 watersheds spread over almost 

all continents worldwide. The better performance was found by fitting Equations (4) and (5), from 

which CNI and CNIII (λ=0.03) with Probability Of Exceedance (POE) equal to 12% and 88%. 

𝐶𝐶N = CNII
a – bCNII

 , where b = (1 – a)
100

       Eq. 6 

In this study, the CNI and CNIII values were determined under ARC-I and ARC-III 

conditions, respectively, by Equations (47) and (48) (Lal, Mishra, and Kumar, 2019). For selecting 

the proper condition, the 5-day-antecedent cumulative precipitations (P5d, mm) were spatially 

calculated from ground-based and IMERG products. To this end, similarly to Ajmal et al. (2015), 

Ajmal and Kim (2015), and Lal, Mishra, and Kumar (2019), intervals were considered for 

distinguishing the ARC, and the P5d values were calculated to determine them. For the Growing 

Season (GS, from March to July) and Dormant Season (DS, from August to February), the ARC 

intervals were the following: for ARC-I, if 𝑃𝑃5𝑑𝑑 < 35.56 mm (GS) or 𝑃𝑃5𝑑𝑑 < 12.7 mm (DS); for ARC-

II, if 35.56 ≤ 𝑃𝑃5𝑑𝑑 ≤ 53.34 mm (GS) or 12.70 ≤ 𝑃𝑃5𝑑𝑑 ≤ 27.94 mm (DS); and, for ARC-III, if 𝑃𝑃5𝑑𝑑 > 

53.34 mm (GS) or 𝑃𝑃5𝑑𝑑 > 27.94 mm (DS) (Chow, Maidment, and Mays, 1988; SCS, 1972). While 

the urban area and bare soil were considered only in DS condition, the forest was considered only 

in GS condition. 

CNI,λ=0.03= CNII, λ=0.03

2.42081 – 0.01421CNII,λ=0.03
       Eq. 7 

CNIII,λ=0.03= CNII,λ=0.03

0.42405 + 0.00576CNII,λ=0.03
       Eq. 8 

As shown in Equations (7) and (8), the CNII values must be obtained for λ equal to 0.03 

instead of the conventional λ equal to 0.20 before estimating the surface runoff. Lal, Mishra, and 

Kumar (2019) found that in 61 out of 63 watersheds throughout the world, the λ was lower than 

0.20, among which roughly 50% featured λ lower than 0.05. In Southern Brazil, da Costa et al. 

(2019) found that 67% of the rainfall events held λ lower than 0.06, whereas only 12% held λ 

higher than 0.20.  
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1.3.4.4 SWAT model advances and limitations 

Although this model has been expanding its boundaries in the scientific environment, as it 

has a modeling profile that encompasses several hydrological and agronomic components, assisting 

public agencies in decision-making in situations of conflict in land use and improvement (CHU et 

al., 2005), some studies have identified several limitations (ARNOLD and FOHRER, 2005) and 

need to develop the model (KRYSANOVA and ARNOLD, 2008). 

The limitations ranged from the incorrect explanation of the transport and deposition 

processes in the landscape, which are added to the level of the sub-basin and added directly to the 

entire basin of interest, making it difficult to accurately identify critical source areas and to place 

conservation practices and techniques within the sub-basin (BIEGER et al., 2017). 

To face present and future challenges in water resource modeling and management and 

motivated by the U.S. Clean Water Act and the European Water Framework Directive (which 

require the quantification of polluting loads in water bodies), the need to modify the SWAT code 

arose to streamline the development of the model, resulting in SWAT+ (BIEGER et al., 2017), a 

completely revised version of SWAT, for improved simulation of landscape position, overland 

routing, and floodplain processes within the watershed. 

Although it uses the SWAT model similar equations in estimating runoff and/or infiltration, 

evapotranspiration, plant growth, and routing, SWAT+ is considerably more flexible concerning 

the discretization and spatial configuration/representation of interactions and processes in the 

watershed, as summarized by Bieger et al. (2017), with the most important model modifications 

and their advantages.  

The Hydrological Response Units (HRUs), channels, reservoirs, aquifers, lagoons, point 

sources, and inlets are spatially separate objects, whose hydrological interaction can be defined by 

the user so that it represents the physical characteristics of a hydrographic basin in the most realistic 

way possible. The decision tables introduced in the modified code allow the user to specify 

conditions for various management activities within the SWAT+ (ARNOLD et al., 2018). 

The SWAT+ model is considerably more flexible concerning the discretization and 

configuration of the basin, scenic drives, HRUs, aquifers, canals, reservoirs, ponds, and point 

sources of pollution are separate space objects that allow the separation of processes high ground 

of humid areas (BIEGER et al., 2017), unlike the SWAT which divides into multiple sub-basins, 
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considering a single watercourse per sub-basin, which in turn is subdivided into an unlimited 

number of hydrological response units (HRU). 

The HRU consists of an area, within the sub-basin, characterized by the same type of soil 

and land use, agricultural management, and slope classes (ARNOLD et al., 2012).  

As stated by Farias (2021), another important point of introducing the SWAT+ version is 

the possibility of adding space objects, such as channels, bombs, herds, and water rights, facilitating 

the integration with other sciences and modules into the SWAT+ algorithm to improve the detailed 

simulation of climate change and LULCC impacts on water resources.  

 
1.3.4.5 Sensitivity analysis, calibration, and model validation 

Like several predictive models, the ability of SWAT to simulate the hydrology of a 

watershed is assessed through calibration and validation processes (WHITE and CHAUBEY, 

2005), which are quite critical, as the models present a series of uncertainties involved in a 

phenomenon as complex as the hydrological cycle processes. 

However, it is necessary to carry out a sensitivity analysis to define which parameters most 

affect the model's responses, which according to Feyereisen et al. (2007), makes it possible to 

identify the input parameters that have the greatest effect (quantitative and qualitative) on the model 

output, allowing the establishment of the most sensitive set of parameters, which should be used in 

the calibration process (KANNAN et al., 2007), disregarding the parameters identified as having 

less sensitivity (ABBASPOUR et al., 2004), since they have less influence on the processes under 

analyzing. 

The determination of the most sensitive parameters is the first step in the calibration and 

validation process of the model, which can be performed based on sensitivity analysis and/or expert 

opinion (ARNOLD et al., 2012a). The sensitivity of hundreds of input variables in the SWAT 

model can be assessed using the IPEAT+ (YEN et al., 2014; YEN et al., 2019), SWAT-CUP 

(ABBASPOUR et al., 2007; ARNOLD et al., 2012). 

The SWATplusCUP model is an independent software developed for sensitivity analysis, 

and model calibration and validation processes, which comprises five calibration procedures, as 

follows: Generalized Likelihood Uncertainty Estimation - GLUE, Parameter Solution - ParaSol, 

Sequential Uncertainty Fitting Algorithm - SUFI-2), Monte Carlo methods via Chains Markov 

(Markov chain Monte Carlo - MCMC) and Particle Swarm method (Particle Swarm Optimization 
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- PSO), and eleven objective functions, such as, mult, sum, NS, ssqr, PBIAS, KGE, RSR, MNS 

(ABBASPOUR et al., 2015). 

Among the calibration procedures previously mentioned, the SUFI-2 algorithm 

(ABBASPOUR; JOHNSON; VAN GENUCHTEN, 2004), which can be consulted in full in 

Abbaspour (2014), stands out for its speed and precision in processing, which consists of three 

major steps: modifying the values of the SWAT inputs, running the SWAT model, and extracting 

the desired output values, in addition to combining in the optimization of the objective function 

and analysis of uncertainties (ABBASPOUR et al., 2007; MEHAN et al., 2017) and deal with the 

smallest possible number of uncertainty, and with a large number of parameters in the calibration 

of a numerical forecasting model (VOUDOURI et al., 2017). 

For uncertainty analysis, the SUFI-2 algorithm considers the uncertainty in the input 

variables, the conceptual model, and the uncertainties in the parameters and measured data 

(MIRANDA et al., 2017), verifying if the data of flow and/or index of the leaf area are inserted in 

95% of uncertainty compared to the initial values (BRESSIANI et al., 2015). 

The degree to which all uncertainties are accounted for is quantified by a measure referred 

to as P-factor and R-factor, where the P-factor which is the percentage of measured data bounded 

by the 95% prediction uncertainty (95PPU), varies between 0 and 100%, while the R-factor is 

characterized by representing the average thickness of the 95PPU band divided by the standard 

deviation of the measured data, varying between 0 and infinite (ABBASPOUR, 2014), with the P-

factor being 1 and the R-factor of 0 indicating a simulation that has a perfect fit (ABBASPOUR et 

al., 2015). 

The two measures that quantify the efficiency of a calibration and uncertainty analysis, 

evaluate the reliability of the adjustment and the degree of efficiency of the model calibrated for 

the uncertainties, which according to Abbaspour (2014), often a balance between the two values 

(factor -R and P-factor) must be achieved. 

According to Abbaspour et al. (2015) among the eleven objective functions of SWAT-CUP, 

the most used to verify the performance of the model are clearly described as follows: 

i. Coefficient of determination (r2) (equation 9), which measures the linear association 

between two variables, with the value, obtained being dimensionless, ranging between 0 

and 1 (MELO NETO et al., 2014), where the forecast model will be more efficient if the 

coefficient of determination is closer to 1 (TUPPAD et al., 2011). 
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• r2 = �∑ �𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 – 𝑄𝑄�𝑜𝑜𝑜𝑜𝑜𝑜�n
i=1 �𝑄𝑄𝑜𝑜𝑖𝑖𝑠𝑠,𝑖𝑖 – 𝑄𝑄�𝑜𝑜𝑠𝑠𝑠𝑠��2

∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖–𝑄𝑄�𝑜𝑜𝑜𝑜𝑜𝑜)2𝑖𝑖  ∑ (𝑄𝑄𝑜𝑜𝑖𝑖𝑠𝑠,𝑖𝑖–𝑄𝑄�𝑜𝑜𝑠𝑠𝑠𝑠)2𝑖𝑖
      Eq. 9 

 
ii. Nash- Sutcliffe Simulation Efficiency Coefficient (NSE) (equation 10), correlates two 

linear variables (making it possible to point out overestimated magnitudes) to indicate how 

much the model's predictions are better than those of a model that simply predicts the 

averages of the observed data (NASH and SUTCLIFFE, 1970), ranging from -∞ to 1, in 

which 1 represents a perfect fit between the observed and simulated data, while negative 

values indicate that the average of the observed data is a better predictor than the results of 

the model (LIN, CHEN, and YAO, 2017). On the other hand, Moriasi et al. (2007) report 

that values of 0.75<NSE≤1.00 are considered an optimal fit and 0.5<NSE≤0.65 as 

satisfactory. 

• NSE = 1 - 
∑ �Qobs –𝑄𝑄𝑜𝑜𝑖𝑖𝑠𝑠�

 2
𝑠𝑠n

i=1

�∑ (Qobs, i –𝑄𝑄�𝑜𝑜𝑜𝑜𝑜𝑜)2n
i=1 �

       Eq. 10 

 
iii. The Percent bias (PBIAS) (equation 11), on the other hand, indicates the average trend 

between the simulated values compared to those observed ones, and when a result is a 

positive number, it indicates an overestimation of the calculated variable and negative 

otherwise. The optimal fit value of PBIAS is 0.0, with low-magnitude values indicating 

accurate model simulation (MORIASI et al., 2007), with the positive values of this 

objective function indicating a tendency to underestimate the simulated data, while the 

negative values indicate overestimation (VENZON; PINHEIRO; KAUFMANN, 2018). 

• PBIAS = 100
∑ �Qobs− 𝑄𝑄𝑜𝑜𝑖𝑖𝑠𝑠�𝑠𝑠𝑛𝑛
𝑖𝑖=1
∑ � Qobs,𝑖𝑖�𝑛𝑛
𝑖𝑖=1  

       Eq. 11 

where: 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  is the observed discharge; 𝑄𝑄𝑜𝑜𝑠𝑠𝑠𝑠 is the simulated discharge; 𝑄𝑄�𝑜𝑜𝑜𝑜𝑜𝑜 is the mean 

observed discharge and 𝑄𝑄�𝑜𝑜𝑠𝑠𝑠𝑠 is the mean simulated discharge. 

 
In this thesis, the three (3) performance rating indices described above were adopted, to 

assess the performance of the SWAT model, within the range of variation summarized in Table 2 

(MORIASI et al., 2007), which considers the evaluation of the modeling at a time-step. 
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Table 4: Model Performance Ratings for monthly time-step 

Performance 𝒓𝒓2 NSE PBIAS 

Very good 0,80 < r2 ≤ 1,00 0,75 < NSE ≤ 1,00 PBIAS < ± 10 

Good 0,70 < r2 ≤ 0,80 0,65 < NSE ≤ 0,75 ±10 < PBIAS ≤ ±15 

Satisfactory 0,60 < r2 ≤ 0,70 0,50 < NSE ≤ 0,65 ±15 < PBIAS ≤ ±25 

Unsatisfactory r2 ≤ 0,60 NSE ≤ 0,50 PBIAS ≥ ±25 

Source: Moriasi et al. (2007) 

 

1.4 STUDY AREA 

With an area of around 640,000 km2 (7.5% of Brazil), the São Francisco River basin was 

the site of the investigation, occupying the region between 7.2º – 21.1º S and 36.3 º – 47.6º W, 

as shown in Figure 4. The region's variable precipitation patterns and biomes led to its 

classification into four physiographic regions: Upper (100,076 km2 – 16%), Middle (402,351 

km2 – 63%), Sub-Middle (110,446 km2 – 17%), and Lower São Francisco (25,523 km2 – 4%). 

The São Francisco River Basin has approximately 14,3 million inhabitants (71.74 

inhabitants per square kilometer and about half located in the Upper São Francisco region) with a 

predominantly urban population, represented by 77% of the total population (ANA, 2018), 

distributed (in 503 municipalities) among seven Brazilian states, namely: Bahia (contains 48.2% 

of the SFB), Minas Gerais (36.8%), Pernambuco (10.9%), Alagoas (2.2%), Sergipe (1.2%), Goiás 

(0.5%), and part of the Federal District (0.2%) (TORRES et al. 2011). 

Along the river, there are several large dams listed, and among eight reservoirs constructed 

up to the time of submission of this thesis (mid-June 2023): only, the five largest and main 

reservoirs are situated in the middle course of the São Francisco River. 

In this thesis were considered the main reservoirs mentioned by Farias et al. (2023), are as 

follows: Luiz Gonzaga/Itaparica (3,549 hm3) and Sobradinho (28,669 hm3) located in the Sub-

Middle São Francisco, Paulo Afonso I–IV (26,0 hm3) located in Upper São Francisco, Xingó 

(0,4028 hm3) located in the Lower São Francisco, clearly detailed by Vasco et al (2022). 

All of the aforementioned reservoirs are managed by Hydro Electric Company of São 

Francisco River basin (CHESF), and Três Marias (15,278 hm3), located in the Upper São Francisco 

and managed by CEMIG, a Belo Horizonte-headquartered power company, the capital city of 

Minas Gerais state.  
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A study developed by Fernandes (2015) highlighted the existence of 68 billion m3 of water 

accumulated in reservoirs for electricity generation, human and industrial supply, flow regulation, 

improvement in river navigability, flood control, irrigation, tourism, recreation, and fishing 

enterprise. The important role of the São Francisco River is in generating electricity, with an 

installed potential of 10,708 MW by 2013 (to supply ~12% of the country’s total) (BARRETO et 

al. 2020), where Luiz Gonzaga/Itaparica (1,479 MW), Sobradinho (1,050 MW), Paulo Afonso I–

IV (2,462 MW) and Xingó (3,162 MW) are the largest hydroelectric plants (CBHSF, 2015).  

This covers 94% of the installed capacity for hydroelectric power generation in Northeast 

Brazil, which represents approximately 70% of the total electric power generation capacity in this 

region (MARQUES; GUNKEL; SOBRAL, 2019). The vegetation cover within the São Francisco 

River basin is diverse: it includes the Atlantic Forest (headwaters), the Cerrado (Upper and Middle 

São Francisco), the Caatinga (Middle and Sub-Middle São Francisco), and the Atlantic Forest and 

native formations (mangrove and coastal vegetation) (Lower São Francisco) (BARRETO et al., 

2020; LUCAS et al., 2021).  
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Figure 4: Geographic location map of the São Francisco River basin, Brazil 

Source: modified from Matos and Zoby (2004). 

 

The study area has soils suitable for the practice of irrigated agriculture in the Upper, Middle, 

and Lower São Francisco (MARQUES; GUNKEL; SOBRAL, 2019). The basin has 64 million 

hectares, of which 35.5 million hectares are arable, with greater concentration in the vicinity of 

valleys and urban areas, with 300 thousand hectares of irrigated crops, which represents only 10% 

of the potential of suitable areas for irrigation (FERNANDES, 2015), corresponding to 50.5% of 

water use (MARQUES; GUNKEL; SOBRAL, 2019). 

The São Francisco River Basin presents the smallest rainfall indices relative to other semi-

arid basins in Brazil, with annual precipitations around 938 mm, average annual temperatures of 
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23 to 27º C, an evaporation average of 2000 mm/year, and annual evapotranspiration of 896 mm 

(MARQUES; GUNKEL; SOBRAL, 2019), in addition to irregularity in onset as well as overall 

shortening of the rainy season, delay of the arrival of potentially useful rains, poor distribution of 

rainfall over the year, high temperatures, drought spells, and floods (CARVALHO et al., 2020); as 

about 58% of the basin’s territory is within the semiarid region, mostly in northeastern Brazil 

(BARRETO et al. 2020). 

Although the average precipitation is 938 mm year-1 over the entire basin, there is a large 

variation in precipitation within the São Francisco River basin (LUCAS et al., 2021), with 

November to January being the wettest quarter, contributing 55 to 60% of annual precipitation, 

while the driest quarter is from June to August. As summarized in Table 5, the São Francisco River 

basin presents different climate conditions according to Köppen’s classification. 

 
Table 5: Predominant climate characteristics for the São Francisco River basin (SFRB) according to Köppen’s 

classification 
Region Predominant climate characteristic 

Higher SFRB  Aw, type – hot and humid with summer rains. 

Middle SFRB  Aw and BShw (semiarid). 

Sub-Middle 

SFRB 

BShw (semiarid) – with seven to eight dry months and an autumn rainfall regime 

with an annual total of about 550 mm, mainly concentrated between November and 

March. 

Lower SFRB  As – hot and humid with winter rains, and BSh (semiarid with a short-wet season). 

Source: CBHSF (2015), MARQUES; GUNKEL; SOBRAL (2019), and LUCAS et al. (2021) 
 

The SFRB is the fourth-longest in Latin America and is popularly called “the river of 

national integration” not only because of the volume of transported water, linking southeast and 

northeast Brazil, but also because it crosses a variety of biomes, climates, landscapes, and 

socioeconomic statuses throughout its extension (LUCAS et al., 2021), and national strategic 

importance due to its potential for agriculture, agribusiness, fishing, hydropower electricity, urban 

and industrial water supply, and tourism (TUCCI, 2005). This diversification in the use of its water 

resources recognizes the knowledge of hydrological and climatic characteristics for these uses to 

be optimized without degrading the environment (NASCIMENTO et al., 2019) since the SFRB 

has faced serious water-related problems due to water conflicts for multiple uses and particularly 

its importance for food production by irrigation (LUCAS et al., 2021). 
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1.4.1 The São Francisco River Transposition Project 

The transposition project of the Sao Francisco River into the semi-arid watersheds of the 

Northeast region has been seen as a solution to the scarcity of water in the semi-arid for more than 

a century (MINISTÉRIO INTEGRAÇÃO NACIONAL, 2004), after a severe drought in the 

Northeast. The transposition project, termed PISF, is structured throughout 477 km comprising 

channels, tunnels, and aqueducts, and classified into two axes, North and East, as clearly detailed 

in table 6. 

With an investment estimated at USD 2.85 billion (MDR, 2019), the PISF project aims to 

transport water from the São Francisco River at a flow of up to 127 m3/s, at 99 m3/s in the North 

Axis and 28 m3/s in the East Axis (GALDINO et al., 2020), to branches that will supply to about 

12 million people settled in 390 municipalities throughout the four Northeastern Brazilian states. 

According to the Brazilian Ministry of Integration, the São Francisco River integration 

project will assure the supply needs of municipalities in the semi-arid region, Agreste 

Pernambucano, and Fortaleza Metropolitan region and would be the solution to the problems 

brought about by the scarcity of water and severe droughts. 

 

Table 6: The physical structure of the PISF. 
 North Axis East Axis Total 

Distance 260 km 217 km 477 km 
Pumping stations (EB) 3 6 9 

Installed pumps (Stage 1 6 12 18 
Predicted pumps (Stage 2) 24 24 48 

Flow rate 99 m3/s 28 m3/s 127 m3/s 
Substations 230 kV/6.9 kV 69 kV/6.9 kV - 

8 1 9 
Transmission lines (230 kV) 250 km 

Distribution lines 6.9 kV, 13.8 kV and 69 kV 
Aqueducts 13 

Tunnels 4 
Reservoirs 27 

Recovered weirs 23 
Source: GALDINO et al. (2020). 

The PISF project was not the focus of this study, although its significance cannot be 

overlooked as it has the potential to spur development in Northeastern Brazil and provide access 

to electricity and water. It is suggested that future research incorporate the PISF project to better 
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understand the impact of climate and land-use changes in the SFRB, ultimately ensuring water 

security stated by Galdino et al. (2020). 
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CHAPTER II 
Spatially explicit land use scenarios for the 
São Francisco River Basin, Brazil6 
 
Abstract  

Future land use change in the São Francisco River Basin (SFRB) is critical to the future of regional 

climate and biodiversity, given the large heterogeneity among the four climate types within the basin. 

These changes in SFRB depend on the link between global and national factors due to its role as one 

of the world's major exporters of raw materials and national to local institutional, socioeconomic, 

and biophysical contexts. In this work, LuccME's spatially explicit land change distribution modeling 

framework is used, aiming to develop three models that balance global (e.g., GDP growth, population 

growth, per capita agricultural consumption, international trade policies, and climate conditions) and 

regional/ scene. Local factors (such as land use, agricultural structure, agricultural suitability, 

protected areas, distance from roads and other infrastructure projects), are consistent with the global 

structure Shared Socio-Economic Pathways (SSP) and Representative Concentration Pathways 

(RCP), namely: SSP1/RCP 1.9 (sustainable development scenario), SSP2/RCP 4.5 (moderate 

scenario) and SSP3/RCP 7.0 (high inequality scenario). Based on detailed biophysical, 

socioeconomic, and institutional factors for each region of the São Francisco River Basin, spatially 

explicit land use scenarios to 2050 were created, considering the following categories: agriculture, 

natural forest, rangeland, agriculture, rangeland, and forest. Mosaic Plantation. The results show that 

the performance of the developed model is satisfactory. The average spatial fitting index between 

observed data and simulated data in 2019 is 89.48%, the average fitting error percentage 

corresponding to omissions is 2.59%, and the commission error is approximately 2. 16%. Regarding 

the projected scenarios, the results show that three classes, agriculture, pasture, and mosaic of 

agriculture and pasture will continue in the same direction (increasing), regardless of the scenario 

considered, differently to the class of natural forest and forest plantation, which will decrease in 

scenarios of the middle road and strong inequality, and sustainable development, respectively.  

 
Keywords: LuccME modeling framework, model validation, Shared Socioeconomic Pathways. 

 
6A modified version of this chapter will be shortly submitted to a peer-review international journal. 
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2.1 Introduction  

Land-use and land-cover (LULC) changes have been identified as one of the greatest global 

and regional socio-environmental challenges of the 21st century (PRESTELE et al., 2016), due to the 

important impacts on the environment (VAN ASSELEN; VERBURG, 2013), such as variation of 

various natural support systems, which range from WEF nexus security, agricultural frontier 

(BEZERRA et al., 2022), biodiversity and ecosystem services (FRANCESCONI et al., 2016). 

However, understanding spatial patterns of LULC changes is essential because these affect 

important biogeochemical, social, economic, biophysical, and ecological variables such as soil 

fertility, local climate, and biodiversity (PRESTELE et al., 2016). 

For example, the urbanization process and the implementation of governmental policies for 

agricultural practices can intensify the spatial-temporal land-use and land-cover (LULC) changes as 

well as, people that will face large changes in their environment (FONSECA et al., 2019). 

The interactions between these systems are commonly modeled using globally integrated 

assessment models (VAN BEEK et al., 2020), e.g. LuccME modeling framework (AGUIAR et al., 

2012), which represent complex interactions and feedback on a long-term scale between the 

socioeconomic and natural systems. 

Thus, a spatially explicit assessment of uncertainties is required to identify not only the 

amount but also the geographic extent and location of uncertainty (PRESTELE et al., 2016), aiming 

to provide important contributions to support LULC and environmental policymakers. 

The environmental assessments heavily rely on the provision of historical reconstructions and 

future projections of LULC change trajectories generated by models, to assess the direction and 

strength of anthropogenic LULC change effects on ecosystems and the climate. 

Onward to the development of several activities that are strategically important for 

socioeconomic development, the São Francisco River Basin Region stands out for the intensification 

of changes in use and coverage over the last few years, based on Mapbiomas7 (SOUZA et al., 2020; 

TEIXEIRA et al., 2021) – an open-source raster database that presents the evolution of land use and 

land cover in Brazil, from 1985 to present days. 

In this context, the main goal of this chapter was to project land-use scenarios through a 

spatially explicit model for the São Francisco River Basin. 

 
7The MapBiomas project is an initiative of the Greenhouse Gas Emission and Removal System/Climate Observatory 
(SEEG/OC), composed of a collaborative network and launched in 2015, which that provides annual national-level land 
use and land cover transitions in all biomes of the Brazilian territory with a 30-m spatial resolution on annual basis. The 
MapBiomas classification comprises 33 classes, grouped in the following themes: native vegetation, non-forest natural 
formation, tillage, non-vegetated area, and water. 
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Specifically, was identified, on a regional scale, which environmental and socioeconomic 

factors are related to the dynamics of land use change in the period 2000 and 2010 (1), and analyzed 

the location, intensity, and direction of change in areas of land use change, using the LuccME 

spatially explicit land change modeling framework, considering the factors previously selected (2). 

The projected scenarios represent a diverse range of biophysical, environmental, and 

socioeconomic assumptions about the future and capture a broad range of regional‐ and gridded‐

level uncertainties typical in current models based on the framework developed in the AMAZALERT 

project for the Brazilian Amazon (ZIMM; SPERLING; BUSCH, 2018), in line with the SSPs and 

RCPs to be useful to environmental policymakers on land use changes (BEZERRA et al., 2022). 

This chapter is divided into four sections. The first section, i.e., an introduction provides a 

brief background of other related studies while the second section deals with the materials and 

methods, which includes a description of the study area, socioeconomic status, database building 

containing variables, and algorithm structure of LuccME, model calibration and validation. The third 

section, results, and discussion provide outcomes followed by the concluding remarks of this study 

and some suggestions and recommendations that can be utilized for the protection and conservation 

of land resources. 

 

2.2 Material and Methods  

2.2.1 Study area brief description  

This work was carried out in the São Francisco River Basin, one of the largest in Brazil, 

extending approximately 2,700 km, annual discharge of 94,000,000 m3 and a flow rate between 2,100 

and 2,800 m3/s (FERNANDES, 2015; TEIXEIRA et al., 2021). 

The river has its source in the Serra da Canastra National Park (Minas Gerais, the southern 

region of Brazil) and its mouth is in the Atlantic Ocean, between the states of Alagoas and Sergipe 

(the northeast coast of Brazil). Therefore, the São Francisco River encompasses four different climate 

types: a dry subhumid climate in the southern hemisphere with a dry season coinciding with winter 

(Upper São Francisco), a semi-arid climate (Central São Francisco), a semi-arid and arid climate 

(Lower São Francisco) (BEZERRA et al., 2019). 

The climatology of the São Francisco River Basin is characterized by high spatial-temporal 

variability due to the action of different large-scale, meso, and local meteorological systems 

(OLIVEIRA; SANTOS E SILVA; LIMA, 2017). The average annual rainfall ranges from 1,500 mm 
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(Hight São Francisco in Minas Gerais) to 350 mm (Lower São Francisco) (MARQUES; GUNKEL; 

SOBRAL, 2019), and soils with an aptitude for irrigated agriculture predominate in this basin. 

 

2.2.2 Modeling Approach  

In this work, we adopted a top-down modeling approach/protocol (VERBURG et al., 2015), 

whose conceptual structure for the projection of the scenarios of land-use change for the SFRB region 

through the LuccME framework, is presented in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Source: adapted by the author (2023). 
 
2.2.2.1 Spatial Database Building 

One of the relevant steps for the development of the model presented in this work was the 

construction of the database, containing biophysical and anthropic factors as potentially important 

factors in the process of land-use change for the entire São Francisco River basin.  

From the Water Resources Plan of the São Francisco River Basin (2016–2025) (NEMUS, 

2016), and based on the literature review stating that, in the Northeast of Brazil, land-use changed 

minimally during the 2000 – 2016 period with greater agricultural expansion in the southwestern 

zone (DIAS et al., 2016; NOOJIPADY et al., 2017), a spatial database with over 30 variables was 

built. Within this set of variables, we have two types of data:  

Components 
• Demand  

o Pre-computed Values 
• Potential  

o Spatial Lag Regression 
• Allocation  

o CLUE Like Model 
  

Scenario assumptions 
• SSP1 RCP 1.9  
• SSP2 RCP 4.5  
• SSP3 RCP 7.0 

 

Model parametrization 
• Potential CS Spatial Lag Regression 

o R (stepwise regression) 
• Spatial Lag Regression  

o GeoDa software 
 

Spatial Database Building  
• Socioeconomic variables 

o Homogenization of variables 
 Fill Cell plugin 
  

Figure 5: A conceptual structure for projecting the scenarios of land use changes through the 
LuccME framework. 



 

 

87 
 

i. Variables were dependent on land use and land cover: from the classes established in the 

"MapBiomas Project – collection 5 of the Annual Series of Land Cover Maps of Brazil", 

through the link: https://mapbiomas.org/produtos, where data from LULC were organized 

into six (6) classes of interest: agriculture, planted forest, natural vegetation, mosaic, pasture, 

and the unobserved area and others were reclassified to the class "other". The data periods of 

land use and occupation changes analyzed were from 2010 to 2050, being used 2010-2015 

(for calibration), 2015-2019 (for validation), and 2020-2050 (for land use scenarios).  

ii. Independent variables related to socioeconomic, environmental, and political factors that 

influence the land-use change, are described in Table 2. 

Both variables were integrated into a spatial resolution cellular space of 100km2 (10 km x 10 

km), created in the TerraView GIS environment using the Fill Cell Plugin (BEZERRA et al., 2022). 

The use of cellular space made it possible to homogenize the factors described above, regardless of 

their source format (vector data, matrix data, etc.), aggregating them in the same space-time basis, 

through operators (e.g., percentage of each class, minimum distance, etc.) used according to the 

geometric representation and semantics of the attributes of the input data. 

 

2.2.2.2 Model description  

An open-source modeling framework, LuccME (http://luccme.ccst.inpe.br/luccme/), 

originally developed on the TerraME computational environment at the Earth System Science Center 

of the National Institute for Space Research (CCST/INPE) and partners (BEZERRA et al., 2022; 

CARNEIRO et al., 2013), was adopted in this work to build a new spatially explicit LUCC model to 

project future scenarios of land use/cover changes for the São Francisco River Basin.  

Through LuccME framework modeling, the modelers can combine (existing and/or creating 

new) different components, such as demand (quantifying the changes), potential (calculation of the 

suitability of change for each cell), and allocation (spatial distribution of changes based on land 

demand and each cell’s potential to change), to create different land use and land cover change 

(LUCC) models at different space-time scales (AGUIAR et al., 2012). 

The adapted generic structure of the main spatially explicit land use/cover change models 

(TEJADA et al., 2016), shows that this open-source modeling framework, LuccME, follows several 

well-known LUCC models’ structures that use a range of different approaches and techniques for 

their three components. 

https://mapbiomas.org/produtos
http://luccme.ccst.inpe.br/luccme/
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However, the LuccME modeling framework (CARNEIRO et al., 2013), allows the building 

of new models, combining the elements of demand, potential components, and allocation, which are 

designed according to the concepts of the main LUCC models found in the literature, CLUE 

(TIESKENS et al., 2017; VERBURG et al., 1999, 2019), Dynamic EGO (SOARES-FILHO; 

COUTINHO CERQUEIRA; LOPES PENNACHIN, 2002), GEOMOD (PONTIUS; CORNELL; 

HALL, 2001), which are classified according to the purpose, scale, approach or underlying theory. 

The demand component is responsible for determining the amount/intensity of the changes 

of each use change that is intended to be allocated for each time step (AGUIAR et al., 2012). In this 

case, the LuccME Precomputed Values component was adopted to calculate the annual demand 

considering the amount of land use and occupation change for each transition period (BEZERRA, 

2016), how much will be able to change annually from each class in the period from 2010 to 2050, 

according to equation 12. 

𝐶𝐶𝑐𝑐𝑎𝑎  =  𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐− 𝐿𝐿𝑐𝑐𝑐𝑐𝑖𝑖
𝑛𝑛𝑐𝑐 

      Eq. 12 

where 𝐶𝐶𝑐𝑐𝑎𝑎 corresponds to the annual change in the area of the land use class 𝐿𝐿𝑐𝑐 between the 

initial 𝑡𝑡𝑠𝑠 and 𝑡𝑡𝑓𝑓 end year of the chosen period, and 𝑛𝑛𝑡𝑡 refers to the number of years of the period. 

 
Among the various ways of calculating the annual demand 𝐷𝐷𝑐𝑐𝑎𝑎𝑡𝑡𝑘𝑘, in the present study, the 

demand was calculated for the period 2010 and 2050 (presented in Table 7), considering the 

difference in the area (km2) of each of the classes of land use and cover and redistributed equally for 

each year, in the period considered, according to equation 13. 

𝐷𝐷𝑐𝑐𝑎𝑎𝑡𝑡𝑘𝑘 =  𝐿𝐿𝑐𝑐𝑡𝑡𝑘𝑘−1 + 𝐶𝐶𝑐𝑐𝑎𝑎,       Eq. 13 

where Dcatk  corresponds to the annual demand of a given land use class in a year 𝑡𝑡𝑘𝑘, calculated 

from the sum of the class area in the previous year 𝑡𝑡𝑘𝑘−1, and the annual change 𝐶𝐶𝑐𝑐𝑎𝑎 
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Table 7: Land demand parameters 
Precomputed values SSP1 RCP 1.9 SSP2 RCP 4.5 SSP3 RCP 7.0 

 
Agriculture 

from 47,046 km2 (2000) 47,046 km2 (2000) 47,046 km2 (2000) 
to 24,725 km2 (2050) 64,441 km2 (2050) 214,305 km2 (2050) 

 
Natural Forest 

from 283,932 km2 (2000) 283,932 km2 (2000) 283,932 km2 (2000) 
to 318,615 km2 (2050) 223,982 km2 (2050) 176,665 km2 (2050) 

 
Pasture 

from 30,302 km2 (2000) 30,302 km2 (2000) 30,302 km2 (2000) 
to 33,573 km2 (2050) 50,502 km2 (2050) 53,815 km2 (2050) 

Mosaic of Agr. 
/Pasture 

from 105,791 km2 (2000) 105,791 km2 (2000) 105,791 km2 (2000) 
to 137,164 km2 (2050) 209,918 km2 (2000) 178,687 km2 (2050) 

Forest plantation from 4,214 km2 (2000) 4,214 km2 (2050) 4,214 km2 (2000) 
to 2,024 km2 (2050) 5,274 km2 (2000) 1,592 km2 (2050) 

 
In the initial year, the demand value corresponds to the observed value of the land use class, 

calculated based on the land use and land cover data used; in this case, MapBiomas LULC data. 

For the potential module, the LuccME / São Francisco model used a component alternative 

based on Spatial Lag Regression, which considers the spatial autocorrelation between the 

determining factors (explanatory factors) (AGUIAR et al., 2012), and dependence to estimate the 

potential of cellular space to change at each time step (BEZERRA, 2016), and can be translated by 

equations 14 and 15. 

𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝑃𝑃𝑃𝑃𝑥𝑥,𝑦𝑦,𝑡𝑡,𝑢𝑢 =  % 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠𝑃𝑃𝑡𝑡𝑃𝑃𝑒𝑒 𝑢𝑢𝑜𝑜𝑃𝑃𝑢𝑢𝑃𝑃 𝑥𝑥,𝑦𝑦,𝑡𝑡 –  % 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑃𝑃 𝑢𝑢𝑜𝑜𝑃𝑃𝑢𝑢𝑃𝑃 𝑥𝑥,𝑦𝑦,𝑡𝑡−1  Eq. 14 

 
𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝑃𝑃𝑃𝑃𝑥𝑥,𝑦𝑦,𝑡𝑡,𝑢𝑢 =  % 𝑢𝑢𝑜𝑜𝑃𝑃𝑥𝑥,𝑦𝑦,𝑡𝑡 𝑃𝑃𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠𝑃𝑃𝑡𝑡𝑃𝑃          Eq. 15 

where: 𝑢𝑢 is related to the type of land use or cover; 𝑥𝑥 and 𝑦𝑦 correspond to the location of the 

cell in the cellular plane in time 𝑡𝑡. 

 
Finally, the allocation component used in the LuccME/São Francisco model was based on 

components of the CLUE Like (VERBURG et al., 1999) implemented by the INPE (AGUIAR et al., 

2012) to generate annual maps of land use and occupation changes.  

This module distributes spatially and interactively the land use changes according to the 

previous components (demand and potential), based on the competition between the types of land 

uses in each cell and within a previously established maximum error, according to equation 16, 

proposed by (BEZERRA, 2016) that describes the allocation process for each type of land use/cover. 

𝐿𝐿𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡 =  𝐿𝐿𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡−1 +  𝑃𝑃𝑜𝑜𝑡𝑡𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡 ∗  𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐     Eq. 16 

where the amount of area allocated from a given class of land use Lc at a given 𝑥𝑥𝑦𝑦 location in the cell 

plane at time 𝑡𝑡 is determined in an iterative process of the sum of Lc, x, yy at time 𝑡𝑡 − 1 and the potential 
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Potc, x, y, t multiplied by an adjustment factor proportional to the difference between the allocated area, the 

reported demand, and the direction of the change ITFc. 

 

2.2.2.3 Model parameterization/calibration 

After compiling the database, a statistical analysis was performed to select the set of variables 

to be considered in the model. First linear regression was carried out using R software (stepwise 

regression8 included), and then the variables considered significant in this analysis were submitted 

for spatial correlation analysis between them, through the GeoDa software (ANSELIN; SYABRI; 

KHO, 2006), which identified Spatial Lag Regression as the appropriate regression, based on the 

correlation coefficient (R2) and the significance of each variable presented in Table 8. 

When the spatial correlation was identified, the Potential CS Spatial Lag Regression was 

used, according to equation 17, which is based on and adapted from the spatial lag model (AGUIAR; 

CÂMARA; ESCADA, 2007; ANSELIN; SYABRI; KHO, 2006), and based on the correlation 

coefficient (R2), whose significance of each variable was selected for the model setup. 

In this component, it is considered that the influence of neighboring areas occurs, a 

characteristic that is intrinsic to changes in land use and land cover (BEZERRA et al., 2022). In 

addition, this component allows this potential to be dynamic over the modeled period, that is, every 

year. 

 
𝑃𝑃𝑜𝑜𝑡𝑡𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡 =  %𝑅𝑅𝑃𝑃𝑢𝑢𝐿𝐿𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡 −  %𝐿𝐿𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡−1 : �𝑃𝑃𝑜𝑜𝑡𝑡𝑐𝑐𝑥𝑥𝑦𝑦𝑡𝑡 𝜖𝜖ℛ ∥  −1 ≤  𝑃𝑃𝑜𝑜𝑡𝑡𝑐𝑐𝑥𝑥𝑦𝑦𝑡𝑡 ≤ 1�  Eq. 17 

 
where 𝑃𝑃𝑜𝑜𝑡𝑡𝑐𝑐,𝑥𝑥,𝑦𝑦,𝑡𝑡 corresponds to the potential for the occurrence of a given land use class 𝐿𝐿𝑐𝑐 in a given 

location 𝑥𝑥𝑦𝑦 in a given time step 𝑡𝑡. To determine the potential, the percentage of land use estimated 

by the regression Reg Lc, x, y, t is subtracted from the percentage of existing use 𝐿𝐿𝑐𝑐,𝑥𝑥,𝑦𝑦 at time 𝑡𝑡 − 1. 

 
Table 8 details the general parameters, spatial lag regression parameters, and final 

components of LuccME, such as Spatial Lag Regression, Clue Like Allocation Saturation, and Pre-

Computed Values, in which we externally calculate demand and inform the expected area for each 

land use class annually from 2010 to 2050. 

 

 
8Stepwise regression is a method of fitting regression models in which the choice of predictive variables is carried out 
by an automatic procedure. In each step, a variable is considered for addition to or subtraction from the set of explanatory 
variables based on some prespecified criterion (ANDREW et al., 2017; TRANCOSO et al., 2016). 



 

 

91 
 

Table 8: Description of model components, temporal, and spatial resolution, selected determinant 
variables, and scenario assumptions regarding land use projections 

 
 
 

General parameters 
 
 
 
 
 

 
Spatial scale  

Extent Entire São Francisco River basin 
Resolution 

(Cellular Space) 
10 km x 10 km 

(100km2) 

 
 

Temporal scale 
 
 

Extent 2010 – 2050 
Resolution Yearly 

 
Period  

 

Calibration  2010 – 2015 
Validation 2015 – 2019 
Scenarios 2020 – 2050 

                       SPATIAL LAG REGRESSION PARAMETERS 
POTENTIAL: 

 
 
 
 
 
 

Agriculture 
(R-squared: 

0.795721) 
 
 
 
  

Drivers Metric Regression 
coefficient 

std Error Significance 

Temporary protection Area 6.45455e-008 6.8895e-009 0.00000 
Livestock Area -5.99827e-008 1.26092e-008 0.00000 

Permanent protection Area 3.26743e-007 1.16139e-007 0.00490 
Population Average (in the year 2010) 2.59976e-008 7.6434e-009 0.00067 
Railroad Distance 1.30584e-007 1.78403e-008 0.00000 

State highways Distance -3.95903e-007 7.68316e-008 0.00000 
Priority areas Area -0.0205208 0.00213161 0.00000 

Conservation areas Area -0.0166808 0.00316594 0.00000 
Settlement Area -0.0307039 0.00902494 0.00067 

Aptitude (good) Area 0.0345094 0.00541664 0.00000 
Regular areas Area 0.0324042 0.00332226 0.00000 

Restricted areas Area 0.0124764 0.00314856 0.00007 
 

 
 

Forest Plantation 
(R-squared: 

0.557428) 
 
 

Priority areas Area -0.00415734 0.000970073 0.00002 
Regular area  Area 0.00462673 0.00166935 0.00558 

Restricted areas Area -0.00347557 0.00166454 0.03680 
Sugarcane mills Distance -2.0069e-008 2.87803e-009 0.00000 

ag_pv Average 0.00796724 0.00175907 0.00001 
Unsuitable areas Area -0.00933544 0.00210178 0.00001 

 
 
 
 
 
 

Natural Forest 
R-squared: 0.808121 

 
 
 
 
 

Livestock enterprises Number -6.76544e-006 2.32028e-006 0.00355 
Temporary protection Area -4.23389e-008 1.30666e-008 0.00119 

Livestock Area 2.00632e-007 2.77826e-008 0.00000 
Gini index Average 0.263603 0.0362989 0.00000 

Priority areas Area 0.0461646 0.00395371 0.00000 
Conservation areas Area 0.0388826 0.005736 0.00000 

ag_pv Average 0.0708852 0.00752883 0.00000 
Unsuitable areas Area 0.161762 0.00847408 0.00000 

Regular area  Area 0.0736055 0.00645427 0.00000 
Restricted areas Area 0.0796189 0.00642088 0.00000 
Priority areas  Average 0.00129813 0.000147786 0.00000 

State highways Distance 6.63987e-007 1.28749e-007 0.00000 
 

 
Mosaic of Agriculture 

and Pasture 
(R-squared: 

0.782430) 

State highways Distance -9.99207e-008 3.29047e-008 0.00239 
Regular area Area 0.00369373 0.00149181 0.01329 

Restricted areas Area 0.0130552 0.00153997 0.00000 
avprech Average -8.05443e-005 1.80587e-005 0.00001 

arem Area 0.00841796 0.00137817 0.00000 
 

 
 
 

Pasture 
(R-squared: 

0.837762) 
 
 
 
 
 

Livestock Area -5.23291e-008 1.71047e-008 0.00222 
Gini index Average -0.135681 0.0253183 0.00000 

State highways Distance -5.95004e-007 9.75338e-008 0.00000 
Priority areas Area -0.0144852 0.00286281 0.00000 

Conservation areas Area -0.0263836 0.00435291 0.00000 
ag_pv Average 0.0289874 0.00565199 0.00000 

Regular area Area 0.0276702 0.00432994 0.00000 
Restricted areas Area 0.0330068 0.00426209 0.00000 

aveap Average -0.000291749 6.60039e-005 0.00001 
avtmh Average 0.00409536 0.000460744 0.00000 
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2.2.2.4 Model validation 

For the validation of the models implemented in the LuccME, two routines are available: 

multiresolution of the entire area (ext.) and multiresolution of the areas where there were changes 

(dif.). The two routines compare the difference between the actual data and the simulated data. 

For the validation of the model, the adjustment validation metric was adopted by multiple 

resolutions (COSTANZA, 1989), to compare the results of the model and the changes in land use 

and occupation observed between 2015 and 2019. 

Centrally, the common metric is the level of similarity between the simulated and original 

map at different levels of coincidence on a scale of 1 to 10 (BEZERRA, 2016; COSTANZA, 1989). 

Therefore, this approach allows the evaluation, of both localization errors in the resolution of 

the model itself and spatial pattern errors, degrading the resolution of maps (BEZERRA et al., 2022). 

The similarity level can be calculated based on equation 18: 

𝑁𝑁𝑁𝑁𝑠𝑠 = 1 − �
∑ (|∑ 𝑑𝑑𝑠𝑠𝑓𝑓𝑜𝑜𝑖𝑖𝑠𝑠,𝑐𝑐 − ∑ 𝑑𝑑𝑠𝑠𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐|)𝑘𝑘

𝑐𝑐=1  𝑘𝑘
𝑐𝑐=1

𝑛𝑛
𝑗𝑗=1

2∗ ∑ ∑ 𝑑𝑑𝑠𝑠𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑘𝑘
𝑐𝑐=1

𝑛𝑛
𝑗𝑗=1

� ∗  100     Eq. 18 

 
where NS corresponds to the level of similarity between the actual and simulated maps at a 

given resolution i; j is the window considered; n establishes the number of windows/cells to be 

considered; tex.tit c is the number of cells in a resolution k(i*i); and 𝑒𝑒𝑠𝑠𝑜𝑜𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟  =  % 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑓𝑓 –  %𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑠𝑠 

and 𝑒𝑒𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠  =  %𝑜𝑜𝑠𝑠𝑠𝑠𝑡𝑡−𝑓𝑓𝑠𝑠𝑛𝑛𝑎𝑎𝑟𝑟 –  %𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑠𝑠𝑎𝑎𝑟𝑟, being 𝑡𝑡𝑠𝑠, and 𝑡𝑡𝑓𝑓 the initial and real years, respectively, 

considered in the validation. 

The results are shown in percentages of hit considered through resolution windows 

(multiresolution), according to the similarity between the maps observed and simulated in various 

resolutions (1x1, 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 and 10x10) (AGUIAR et al., 2016; 

FONSECA et al., 2019), through the sampling windows that increase in each period, having adopted 

the permission of 0% error per cell. This metric is particularly useful for characterizing land use and 

land cover change and for validating land use and land cover change models (JOHLL; POISTER; 

FERGUSON, 2002). 

 
2.2.3 Scenario assumptions 

The scenarios developed in the present study were based on assumptions suggested by 

(BEZERRA et al., 2022), i.e.:  

• SSP1 RCP 1.9 (sustainable development scenario) – is a scenario that assumes that all 

existing environmental laws are in force and policies to reduce deforestation, encourage 



 

 

93 
 

environmental restoration, and preserve conservation units and indigenous lands, providing 

an initial framework for our analysis of sustainability pathways. 

• SSP2 RCP 4.5 (intermediate scenario) – this scenario assumes maintaining some of the 

positive trends of the last decade). 

• SSP3 RCP 7.0 (scenario of strong unevenness) – which reflects a weakening of efforts in 

recent years, especially in the socio-environmental dimension.  

 

2.3 Results and Discussion 

2.3.1 Model performance  

The distribution of land-use classes and dissimilarities between the observed and simulated 

data in the validation year 2019 are presented in Figures 6 and 7. The model presented satisfactory 

performance (BEZERRA et al., 2022), with an average spatial adjustment index between observed 

and simulated data in 2019 corresponding to 89.48%, as shown in Table 9. 

 
Table 9: Percentage of spatial adjustment and errors 

Adjustment  
 

Land use class. 

Spatial adjustment Errors 
Patterns Modified areas Omissions Commission 

% 
Agriculture 88.75 61.53 1.60 2.27 

Natural Forest 97.13 56.47 2.35 0.53 
Pasture 94.48 49.44 2.99 2.83 

Mosaic of Agr. /Pasture 78.13 49.85 3.12 2.05 
Forest plantation 88.93 55.62 2.88 3.14 

Average 89.48 54.58 2.59 2.16 
 

When considering only the areas where some change occurred, the average adjustment index 

was 54.58%. The average percentage of adjustment errors corresponding to omissions was 2.59%, 

while commission errors were approximately 2.16%. The lowest omission and commission errors 

were observed in the Agriculture and Natural Forest classes, with 1.60% and 0.53%, respectively. 

Among all classes of land use, the highest general values of spatial adjustment were observed for 

natural forest and pasture, with 88.75% and 97.13%, respectively, if considered pattern changes. 

When considering the areas where changes occurred, the average of the adjustment index of 

all classes was 54.58%; and among the classes that presented the highest values of spatial adjustment, 

agriculture, natural forest, and forest plantation stand out, with 61.53%, 56.47%, and 55.62%, 

respectively. 
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Figure 6: Percentage of agriculture, natural forest, and pasture observed versus simulated in 10 x 
10 km2 cells in 2019, and the spatial distribution of omission and commission errors 
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Figure 7: Percentage of the mosaic of agriculture and pasture, forest plantation observed versus 
simulated in 10 x 10 km2 cells in 2019, and the spatial distribution of errors of omission and 
commission  
 

Fig 8 shows the spatially explicit distribution of the classes of land use in the initial year of 

the simulation (2010) and the three scenarios considered in this work (for the year 2050). It can be 

seen that the scenarios of the middle of the road and strong inequality, present similar patterns in all 

classes of use, with emphasis on the significant increase in the classes of pasture, and mosaic of 

agriculture and pasture, with intensification in the regions of middle and Sub-middle, and lower São 

Francisco, where equally were observed the regeneration of forest vegetation in both scenarios. 
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2.3.2 Scenarios of land-use Change  

Figure 8 presents the spatial distribution of areas and land use according to the scenarios from 2010 to 2050. 

 
Figure 8: Spatial distribution (%) of areas and land use according to the scenarios from 2010 to 2050 
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Table 10 shows the direction of change in land use and coverage, according to classes and 

scenarios between 2010 (observed year) and 2050 (final year). 
 

Table 10: The direction of change in land use change, according to classes and scenarios 
between 2010 and 2050 

Legend: ↗ = Increase and ↘ = Reduction. 
 Agriculture Natural Forest  Pasture Forest Plantation Mosaic of Agr. /Pasture 

SSP1 RCP 1.9 ↗ ↗ ↗ ↘ ↗ 

SSP1 RCP 4.5 ↗ ↘ ↗ ↗ ↗ 

SSP1 RCP 7.0 ↗ ↘ ↗ ↗ ↗ 

 

Analyzing the dynamics of land use change (Table 10), according to the scenarios 

considered, has been observed that agriculture, pasture, and mosaic of agriculture and pasture, 

will continue in the same direction, regardless of the scenario considered.  

Regarding the class of agriculture, this will triple from one scenario to another by 2050. 

These results corroborate with estimated increase of irrigated areas by 130,323 ha between 2018 

and 2025 (BETTENCOURT et al., 2022), more than double the expansion of agriculture by the 

year 2035 (MORAES et al., 2013). Similar results of the expansion of agriculture over the next 

two decades were also observed (FACHINELLI FERRARINI et al., 2020; LIMA et al., 2022), 

with the clearest expansion and water demand increase occurring in Upper and Middle São 

Francisco.  

As shown in Table 10 and Figure 8, the expansion of the agriculture class will be led by 

the decrease of conservation areas, protection (temporary and permanent), and the regular 

suitability of these areas for the practice of agriculture. 

Differently to the class of forest plantation, which will increase in these two scenarios 

(SSP1 RCP 4.5 and SSP1 RCP 7.0), the class of natural forest in the middle road and strong 

inequality scenarios, corroborating with an accelerated modification of the natural conditions 

of the basin reported by between 1985 and 2015 (LIMA et al., 2022), specifically in Upper São 

Francisco due to the observed urbanization process and planted forest area growth. 

According to scenarios of halfway and strong inequality (SSP1 RCP 4.5 and SSP1 RCP 

7.0), the natural forest will suffer a reduction of approximately 59,950 km² and 69.627 km², 

respectively, until 2050, mainly in Upper and Middle San Francisco. However, in the 

sustainable development scenario (SSP1 RCP 1.9), the natural forest will increase by 34,683 

km². This increase occurs mainly in the Sub-middle and Lower São Francisco, as shown in 

Figure 4. 

Total loss estimates of 7,496,128 ha in different types of native vegetation between 1997 

and 2017 reported live up to what will happen with natural forests (FERNANDES et al., 2021), 

which will tend to reduce its length in the scenarios of the middle of the road and strong 
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inequalities (59,950 and 107.267 km², respectively). Differently from the sustainable 

development scenario, there will be an increase of 34,683 km². 

Although the results have shown an increase in agriculture, pasture, and mosaic of 

agriculture and pasture, regardless of the scenario considered, the increase will occur with 

greater intensity in the scenarios of the middle of the road and strong inequalities for the class 

of mosaic and pasture, unlike the agriculture that will register the largest increase in the scenario 

of the middle of the road;  with a difference of about 149,863 km², when compared to the 

scenario of strong inequality. 

The set of scenarios presented in this work provides important information, which can 

help establish public policies that can contribute to biodiversity conservation and reduce 

emissions from deforestation and degradation, especially those resulting from land use/cover 

changes. In addition, this set of scenarios with extension throughout the São Francisco region 

makes it possible to understand how decision-making and the demands of all States that 

compose this region can influence different processes, including hydrologic, along the São 

Francisco river basin. 
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2.4 Conclusion  

In this work, we assess land use change in the SFRB by building a spatially explicit land 

use change model that considers drivers of deforestation, different land needs, land policies, 

and governance arrangements, and operates under three Scenarios running to 2050: optimistic), 

intermediate (similar to "business as usual") and fragmented (worst). 

In the last two cases (road-centric and fragmented), we observed a tendency for the 

plantation category to increase. It was observed that the classes defined by planted forests tend 

to increase in his last two scenarios (road-centric and fragmented). It can be concluded that 

advanced agricultural development in the San Francisco River basin may be directly related to 

flow changes in this region. 

Significant and increasing changes in land use in the SFRB were agriculture, pasture, 

and mosaic of agriculture and pasture, for the three scenarios, which will be led by the reduction 

of conservation units, protection (temporary and permanent), and regular adaptation of these 

areas for the practice of agriculture. 

Preventing the expansion of the agricultural practices in the SFRB cannot ensure 

biodiversity conservation or carbon savings in the absence of complementary measures 

committed to land use efficiency, controlled land use expansion, and new economic 

alternatives. In this perspective, recognizing land-use systems as open and human-driven 

systems is a first and central challenge in designing more efficient land-use policies, the author 

recommends carrying out future studies to analyze the changes considering more classes of 

land-use and other land-use databases, instead of the 5 land-use classes from the MapBiomas 

initiative adopted in the present study. 

Land-use change scenarios are useful in showing how present and future decisions could 

affect land change trends in the São Francisco region. A real-life scenario could be a 

combination of the three scenarios presented in this study. Observing the potential impacts of 

land use in a spatially explicit way, as a valuable discussion on the existing laws of the three 

scenarios considered in this work, can help to prevent (or reduce) and influence policy markers’ 

actions to improve land-use governance. 

It is expected that this work can contribute to adequate planning and better management 

of water resources in the SFRB since changes in LULC can directly interfere with the regime 

of monthly average flows of the region. 
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CHAPTER III 
Multi-model ensemble for long-term 
statistical trend analysis of observed 
gridded precipitation and temperature data 
in the São Francisco River Basin, Brazil9 
 
Abstract  

For effective management practices and decision-making, the uncertainties associated with 

regional climate models (RCMs) and their scenarios need to be assessed in the context of 

climate change. This study analyzes long-term trends in precipitation and temperature data sets 

(maximum and minimum values) from the NASA Earth Exchange Global Daily Downscaled 

Prediction (NEX-GDDP) under the São Francisco River Basin Representative Concentration 

Path (RCP) 4.5 and 8.5, using the REA (Reliable Ensemble Average) method. In each grid, the 

built multi-model was bias-corrected using the CMhyd model for annual, dry, wet, and pre-

season periods – for historical (1961 – 2005) and future (2006 – 2100) periods. The multi-model 

and four different methods, namely: The Mann-Kendall, Mann-Kendall pre-brightening test, 

bias-corrected pre-brightening, and Spearman correlation, were used to detect trends in 

precipitation, and minimum and maximum temperature. The results show an increasing trend 

in mean annual temperature and precipitation across the basin. When analyzed by subregion, 

the results show an increasing trend in monthly average minimum and maximum temperatures 

in the lower, middle, and lower SFRB, while average monthly rainfall increases during the rainy 

season. and preseason games in Upper São Francisco. These climate predictions can be 

provided to decision-makers such as Civil Defense who can use them to take actions/measures 

to relocate people/communities to less risky locations to minimize risk situations or 

vulnerabilities. 

 

Keywords: reliable ensemble averaging, bias correction, trend analysis; nonparametric trend 

tests; Mann–Kendall; modified Mann–Kendall; climate uncertainties; projections, modifiedmk 

package. 

 

 
9A modified version of this chapter will be shortly submitted to a peer-review international journal. 
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3.1 Introduction  

The occurrence of climate change, which can change both the frequency and intensity 

of climate events (CARVALHO et al., 2020), has exposed a wide range of impacts on food 

production, water supply, and the environment (GEBRECHORKOS; HÜLSMANN; 

BERNHOFER, 2019), and are one of the major challenges for environmental and water 

resource management in the 21st-century (LIU et al., 2017). 

Recent climate change has altered precipitation variability – spatial and temporal 

distribution, annual and seasonal patterns (BANERJEE et al., 2020), and increased temperature 

(in the order of 1.1°C and 6.4°C throughout the 2st-century)  in different parts of the world 

(BERLATO; CORDEIRO, 2018), which have received much attention by researchers and 

water and environmental policymakers (PANDA; SAHU, 2019).  

More severe extreme events will occur due to more severe climate change, causing 

significant consequences (HAZELEGER et al., 2012; LAKKU; BEHERA, 2022). Therefore, 

given the water scarcity, the prediction of climatic extremes is essential to analyze the impacts 

of climate change on the environment and in the numerous agricultural irrigation projects 

(ASSIS; SOUZA; SOBRAL, 2015).  

The analysis of hydrometeorological time series trends gained importance in recent 

years (WANG et al., 2020), due to the impacts that are becoming very evident in the 

environment, in the hydrological cycle on a global, regional, and local scale,  and in the social 

and economic well-being (FEREIDOON; KOCH, 2018; KOTIR, 2011; MALLAKPOUR et al., 

2022; NASCIMENTO DO VASCO; DE OLIVEIRA AGUIAR NETTO; GONZAGA DA 

SILVA, 2019). In addition, these analyses are relevant to assessing climate-induced changes 

and planning viable adaptation strategies related to these changes (PANDA; SAHU, 2019). 

Precipitation and temperature are two of the most important variables in the field of 

climate sciences and hydrology often used to trace the extent and magnitude of climate changes 

and variability (CARVALHO et al., 2020), as these physical parameters determine the 

environmental condition of the particular region that affects agricultural productivity for food 

provision (KHAVSE et al., 2015; KUMAR; RAJ GAUTAM, 2014; SINGH; ARYA; 

CHAUDHARY, 2013). 

The spatial and temporal variability of precipitation and temperature is notorious in 

several studies already pulsing around the world, studying patterns of trends concerning climate 

change, based on the observed data available for longer periods (BURI et al., 2022; 

HUNDECHA; BÁRDOSSY, 2005; ISOTTA; BEGERT; FREI, 2019; KANDA et al., 2020; LI 

et al., 2022; MALLAKPOUR et al., 2022). 

In Brazil, scientific efforts to understand hydrometeorological aspects of the SFRB have 

been carried out, given its relevance to the Brazilian semiarid (BEZERRA et al., 2019; 
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MONTENEGRO; RAGAB, 2012; NETO et al., 2016), as there are still few detailed studies on 

the patterns of the long-term trend for precipitation and temperature (minimum and maximum)  

in the São Francisco River basin (ASSIS; SOUZA; SOBRAL, 2015; BEZERRA et al., 2019; 

FONSECA et al., 2019; SILVEIRA et al., 2016; SOUTO; BELTRÃO; TEODORO, 2019), 

which has suffered from systematic drought problems in recent years, leading to serious threats 

to water and environmental security (TEIXEIRA et al., 2021). 

In this context, the SFRB is being considered as one of the areas of study for the 

development of an integrated water resource management model in climate change scenarios, 

as part of the ongoing BRICS-STI multilateral project (BURI et al., 2022). 

Therefore, given the importance of redefining water resource management policies and 

making the system more resilient to the challenges of climate change, the main objective of this 

study is to analyze the seasonality, variability, and long-term trend of precipitation and 

temperature data available in the SFRB, using four different trending methods. 

 

3.2 Materials and Methods 

3.2.1 Study area brief description 

The present study was carried out in the São Francisco River basin, located entirely in 

Brazil, covering an area of 636,920 km2 (7.5% of the Brazilian national territory). It drains areas 

of seven federative units, with an extension of approximately 2. 700 km, discharging 94 000 

000 m3 annually. 

The average annual season and the flow of the 95th percentile (i.e., Q95 — a low flow 

metric) in the SFRB are 2914 m3/s and 875 m3/s, respectively (LUCAS et al., 2021).  This 

includes fragments of different biomes, Atlantic forest, caatinga, coastal, and Cerrado that cover 

practically half of the basin area, in addition to the predominance of soils with an aptitude for 

irrigated agriculture (MARQUES; GUNKEL; SOBRAL, 2019). 

The average annual evapotranspiration is 896 mm, presenting high values between 1400 

and 840 mm, due to the high temperatures (22–32ºC), the intertropical geographical location 

and the reduced cloudiness, high incidence of solar radiation, and the relatively high annual 

evaporation rates of around 2300 to 3000 mm.  

The area has an irregular distribution of rainfall throughout the year, from November to 

January, the wettest quarter, contributing 55 to 60% of annual rainfall, while the driest quarter 

is from June (MARQUES; GUNKEL; SOBRAL, 2019). 

The basin is an area of strategic economic and development importance, with 

socioeconomic disparities between the sub-basins, with emphasis on predominantly urban uses 

and occupations in the highest part, and agricultural and mining activity spread throughout the 
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basin, in addition to a robust industrial park, covering the metallurgical, textile, food, and 

chemical companies areas (BEZERRA et al., 2019).  

In addition, the Lower Middle San Francisco is vulnerable to the occurrence of severe 

droughts, usually associated with strong El Niño (BEZERRA et al., 2019),  besides being 

challenged by water conflicts for multiple uses (LUCAS et al., 2021), which makes it imperative 

to understand precipitation and temperature trends and their extremes over the Basin of the São 

Francisco River for flood vulnerability mapping and risk assessment, to improve water resource 

management strategies. 

 

3.2.2 Data description 

A 44-year dataset (1961 - 2005) was obtained through two databases, (i) daily rainfall 

data (mm) through the APAC website (Pernambuco State Agency for Water and Climate;   

https://www.apac.pe.gov.br/monitoramento), and ANA (National Water Agency;   

https://www.snirh.gov.br/hidroweb/serieshistoricas); (ii) complete meteorological data such as 

precipitation (mm), solar radiation (MJ/m2), relative humidity or dew point temperature (%), 

average air temperature, maximum and minimum air temperatures (ºC), and wind speed (m/s) 

through the INMET (National Institute of Meteorology) database; 

http://www.inmet.gov.br/projetos/rede/pesquisa/inicio.php). 

For the preparation of grid data, daily rainfall records of rainfall stations in Brazil and 

APAC stations (for the State of Pernambuco) were used. The grid data set was developed after 

the quality control of the rainfall stations, performed as follows: (i) replace all missing values 

(currently coded as − 99.9) into an internal format that the software recognizes (i.e., NA, not 

available) and (ii) replace all unreasonable values into NA. 

Further, a 149-year dataset of historical climate data in 0.25° × 0.25° grids for 

precipitation and a 1° × 1° grid for temperature, were shared by the Indian team, as part of the 

ongoing multilateral BRICS research project, titled “Integrated Water Management Model for 

Brazil, India, and South Africa under climate change scenarios” (BURI et al., 2022).  

 

3.2.3 The Multi-Model Ensemble Approach 

Multi-model ensembles (MEMEs) are widely employed in short-range climate 

forecasting to reduce the underlying uncertainties related to GEOS-5 Atmosphere-Ocean 

General Circulation Models (AOGCMs) simulations/projections (AHMED et al., 2020), due to 

the models' complexity caused by measurement error, randomness, and systematic error in 

multiple climate models (CLARK et al., 2016). To address the underlying uncertainties in 

climate modeling, several RCMs and emission scenarios are employed and termed as Multi-

Model Ensemble (MME) through a Reliability Ensemble Averaging (REA) approach (BURI et 

https://www.apac.pe.gov.br/monitoramento
https://www.apac.pe.gov.br/monitoramento
https://www.snirh.gov.br/hidroweb/serieshistoricas
https://www.snirh.gov.br/hidroweb/serieshistoricas
http://www.inmet.gov.br/projetos/rede/pesquisa/inicio.php
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al., 2022), which measures the multi-model uncertainty in the form of model performance to 

increases confidence when projecting climate data into the future, while projecting variables in 

the future periods. 

Aiming to identify the optimum number of AOGCMs required for an MME from a pool 

of AOGCMs ranked based on their performance in simulating past observed climates, in this 

work, a total of nine driving CMIP5 AOGCMs (CAnESM2, CM5A-MR, CSIRO, EC-EARTH, 

GFDL-ESM2M, HadGEM2-ES, MIROC5, NORESM1, and SHMI-ESM) (BURI et al., 2022), 

and two emission scenarios (RCP 4.5 and RCP 8.5) (SCHWALM; GLENDON; DUFFY, 2020; 

THOMSON et al., 2011) – representing the present-day climate factually and involving 

comparing GCM10 simulations with observed climate by considering performance measures.  

The process of integrating an ensemble of models was done by taking a simple 

arithmetical average or by following a weighting procedure developed on the performance 

indicators of the RCMs simulating historic climate data, and BIAS Correction. 

1. Performance indicators: To evaluate RCMs’ ability to match the actual climate, the 

performance indicators used in this work were, Root Mean Square Deviation (RMSD), 

Normalized Root Mean Square Deviation (NRMSD), Absolute Normalized Mean Bias 

Deviation (ANMBD), Pearson Correlation Coefficient (CC), Nash–Sutcliffe Efficiency 

(NSE) and Skill Score (SS), whose mathematical equations for each indicator as well as 

their ideal values are summarized in Table 11. 

For the calculation of performance indices, average monthly precipitation, and 

temperature data sets of observed (IMD) and simulated (RCM) values are used for the 

period 1961–2005. The observed and simulated values of the respective datasets are 𝒙𝒙𝒊𝒊 

and 𝑦𝑦𝑠𝑠. The mean of observed and simulated values is denoted by 𝑥𝑥− and 𝑦𝑦−. The 

number of datasets is denoted by 𝐼𝐼. The standard deviations of observed and simulated 

values are denoted by 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 and 𝜎𝜎𝑜𝑜𝑠𝑠𝑠𝑠, respectively.  

 
Table 11: The mathematical equations and ideal values of performance metrics 

Source: adapted from (BURI et al., 2022) 
S. No. Performance Metric Equation Ideal Value 

 
1 
 

 
Root Mean Square Deviation (RMSD) 

 
�1
𝐼𝐼
�(𝑋𝑋𝑠𝑠 − 𝑌𝑌𝑠𝑠)2
𝑇𝑇

𝑠𝑠=1

 
 

0 
 

 
2 
 

 
Normalized Root Mean Square Deviation 

(NRMSD) 
 

�1
𝐼𝐼∑ (𝑋𝑋𝑠𝑠 − 𝑌𝑌𝑠𝑠)2𝑇𝑇

𝑠𝑠=1

𝑋𝑋�
 

 
0 
 
 

 
10 RCM data can be accessed at: https://esg-dn1.nsc.liu.se/search/esgf-liu/. 

https://esg-dn1.nsc.liu.se/search/esgf-liu/
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3 
 
 

 
Absolute Normalized Mean Bias Deviation 

(ANMBD) 
 

�
1
𝐼𝐼∑ (𝑌𝑌𝑠𝑠 − 𝑋𝑋𝑠𝑠)𝑇𝑇

𝑠𝑠=1

𝑋𝑋�
� 

 
0 
 
 

 
4 
 

 
Pearson Correlation Coefficient (CC) 

 

�1
𝐼𝐼∑ (𝑧𝑧𝑠𝑠 − 𝑧𝑧̅)𝑇𝑇

𝑠𝑠=1 (𝑦𝑦𝑠𝑠 − 𝑦𝑦�)

(𝐼𝐼 − 1)σ𝑜𝑜𝑜𝑜𝑜𝑜
σ𝑜𝑜𝑠𝑠𝑠𝑠

 

 
1 

 
5 
 

 
Nash–Sutcliffe Efficiency (NSE)  

 
1 −

�1
𝐼𝐼∑ (𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑠𝑠)2𝑇𝑇

𝑠𝑠=1

∑ (𝑥𝑥𝑠𝑠 − �̅�𝑥)2𝑇𝑇
𝑠𝑠=1

 

 
1 
 

 

2. Normalization Technique 

The mathematical representation for normalization is shown in Equation 19 

(PATAKAMURI; MUTHIAH; SRIDHAR, 2020), which helps the conversion of different 

proportionate indicators into the same space. 

𝑘𝑘𝑎𝑎𝑎𝑎 =  𝐾𝐾𝑗𝑗 (𝑎𝑎)
∑ 𝑘𝑘𝑗𝑗 (𝑎𝑎)𝑁𝑁
𝑟𝑟=1

        Eq. 19 

where 𝑘𝑘𝑎𝑎  (𝑃𝑃) is the value of indicator 𝑗𝑗 for RCM 𝑃𝑃; 𝑁𝑁 represents the total number of RCMs. 

 

3. Entropy technique 

The mathematical representation of the entropy technique is shown in Table 12 ((BURI 

et al., 2022). 

Table 12: Methodology of entropy technique 

Step Description Mathematical expression 
1 Normalize the payoff matrix if required 𝑘𝑘𝑎𝑎𝑎𝑎 
 
 
 
 

2 

 
 
 

Entropy for each indicator 
 

𝐸𝐸𝑛𝑛𝑎𝑎 =  −
1

𝑃𝑃𝑛𝑛(𝐼𝐼) � 𝑘𝑘𝑎𝑎𝑎𝑎𝑃𝑃𝑛𝑛�𝑘𝑘𝑎𝑎𝑎𝑎�,
 𝑜𝑜𝑜𝑜𝑟𝑟 𝑗𝑗 

𝑇𝑇

𝑎𝑎 = 1
=  1, . . . . , 𝐽𝐽  

𝑃𝑃 is index for GCMs; (𝑗𝑗 =  1,2, . . . . , 𝑗𝑗) where 
𝐽𝐽 is number of indicators; 𝐼𝐼 represents total 

number of GCMs. 
3 Degree of diversification 𝐷𝐷𝑒𝑒𝑎𝑎  =  1 −  𝐸𝐸𝑛𝑛𝑎𝑎 
4 
 

Normalize the weight of indicators 
 𝑟𝑟𝑎𝑎  =  

𝐷𝐷𝑒𝑒𝑎𝑎
∑ 𝐷𝐷𝑒𝑒𝑎𝑎
𝑎𝑎
𝑎𝑎 = 1

 

 

4. Methodology of weighted average technique 

In this step normalize the payoff matrix if required, where the utility of RCM (𝑉𝑉𝑎𝑎) is 

calculated by Equation 20. 

𝑉𝑉𝑎𝑎 =  �∑ 𝑟𝑟𝑎𝑎𝑘𝑘𝑎𝑎
𝑎𝑎
𝑎𝑎=1 �        Eq. 20 

here, 𝑘𝑘𝑎𝑎 represents the value of indicator 𝑗𝑗 for RCM, and 𝑟𝑟𝑎𝑎 denotes the weight assigned to 

indicator 𝑗𝑗. A higher 𝑉𝑉𝑎𝑎 indicates a suitable RCM. 
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For each RCM, the strengths, weaknesses, and net strengths were calculated based on 

individual ranking techniques and were integrated to form a single ranking pattern based on an 

individual ranking analysis (MORAIS; DE ALMEIDA, 2012). Weights were assigned to all 

RCMs using a weighted average method considering the net strengths. All nine ranked RCMs 

for the precipitation and temperature datasets at each grid point were ensembled by assigning 

weights to reduce uncertainty. 

 

3.2.4 Non-parametric trend tests  

This section lends itself to describe the non-parametric tests adopted in the present 

study, such as the Mann-Kendall Test (MK), Spearman correlation (Spearman), Mann-Kendall 

Test of Pre-Whitened (PWMK), and Bias Corrected Pre-whitening (BCPW) Tests, which are 

widely used to detect tessellations11 in the trend of undistributed environmental and hydro-

meteorological data (BAYAZIT; ÖNÖZ, 2007; BURI et al., 2022; WANG et al., 2020). The 

determination of values of the adopted tests was determined using R Software (modifiedmk 

package;  https://cran.r-project.org/web/packages/modifiedmk/index.html).  

 

3.2.4.1 Teste de Mann-Kendall (MK) 

  The Mann-Kendall (MK) (MANN, 1945; WANG et al., 2020), suggested by the World 

Meteorological Organization (WMO), was adopted to detect significant trends in 

agrometeorological, hydrological (BLAIN, 2015),  and other related environmental variables, 

such as water quality, flow, air temperature, precipitation and drought in different regions of 

the world (MODARRES, 2007). 

The premise for such a test is that the data are independent, because if the observations 

present a positive serial correlation, the test may present a significant response even without a 

tendency (COX; STUART, 1955).  

This method is considered advantageous because it does not assume that the data is 

normally distributed and is flexible for discrepant values in the data provided (PATAKAMURI, 

2017; PATAKAMURI; MUTHIAH; SRIDHAR, 2020). 

In this test, a series of 𝑛𝑛 dimensions consisted of the annual values 𝑥𝑥𝑎𝑎  and 𝑥𝑥𝑠𝑠, and in 

years 𝑠𝑠.and 𝑗𝑗, respectively, with 𝑗𝑗 > 𝑠𝑠. The MK test statistics are obtained by equations 21 and 

22: 

𝑁𝑁 =  ∑ ∑ 𝑜𝑜𝑢𝑢𝑛𝑛 (𝑥𝑥𝑎𝑎 −  𝑥𝑥𝑠𝑠)𝑛𝑛
𝑎𝑎=𝑠𝑠 + 1

𝑛𝑛 − 1
𝑠𝑠=1 ,     Eq. 21 

with  

 
11Coating of a two-dimensional surface (a plane), having, as basic units, congruent polygons or not, without spaces 
between them and so that the total surface is equal to the partitioned space. 

https://cran.r-project.org/web/packages/modifiedmk/index.html


 

111 
 

sgn �xj −  xi� = �
1, if �xj − xi� > 0
0, if �xj − xi� = 0
-1, if �xj −  xi� < 0

�    Eq. 22 

𝑁𝑁, follows a normal distribution with a mean of zero if the values are independent, random, and 

ordered to 𝑛𝑛 > 0, with 𝑁𝑁𝑁𝑁 ≥ 8, the distribution of 𝑜𝑜 approaches the Gaussian form with mean 

𝐸𝐸(𝑁𝑁) = 0, such that the 𝑉𝑉(𝑁𝑁) statistic and variance are given by equation 23:  

𝑉𝑉𝑃𝑃𝑟𝑟 (𝑁𝑁)  = �𝑛𝑛 (𝑛𝑛 − 1)(2𝑛𝑛 + 5)− ∑ 𝑡𝑡𝑖𝑖𝑠𝑠(𝑠𝑠 − 1)(2𝑠𝑠 + 5)𝑠𝑠
𝑖𝑖=1 �

18
    Eq. 23 

Where 𝑛𝑛 is the number of tied groups in the entire dataset, 𝑡𝑡𝑠𝑠 is the total number of data points 

in group 𝑠𝑠 tied. The standardized test statistic is calculated by the following equation 24: 

𝑍𝑍𝑀𝑀𝐾𝐾 =  

⎩
⎪
⎨

⎪
⎧

𝑜𝑜−1
�𝑉𝑉𝑎𝑎𝑟𝑟 (𝑆𝑆)

𝑜𝑜𝑜𝑜𝑟𝑟  𝑁𝑁 > 0

0 𝑜𝑜𝑜𝑜𝑟𝑟  𝑁𝑁 = 0
𝑜𝑜+1

�𝑉𝑉𝑎𝑎𝑟𝑟 (𝑆𝑆)
𝑜𝑜𝑜𝑜𝑟𝑟  𝑁𝑁 < 0

⎭
⎪
⎬

⎪
⎫

     Eq. 24 

The null hypothesis of the Mann-Kendall test assumes that the data are independent and 

identically distributed. For a specific significance level α (90%, 95%), the null hypothesis is 

rejected 𝑍𝑍𝑀𝑀𝐾𝐾 if it is greater than 𝑍𝑍1−α/2 (for a two-tailed test) or Z1−α (for a one-tailed test), where 

α is the level of statistical significance. 

The non-acceptance of the null hypothesis implies that the data do not follow these 

characteristics and thus cannot be taken as independent and identically distributed random 

variables (BLAIN, 2013).  

However, this rejection is often taken as evidence of a trend in a given time series, even 

when it possibly presents positive autocorrelation, as occurs in most environmental and 

hydrological data, specifically in water resources data sets (HELSEL et al., 2020). 

The trend will be considered ascending or decreasing based on the signal, where β > 0 

and β < 0 indicate a growing and decreasing trend, respectively. The magnitude of the trend is 

determined by the Theil-Sem (PATAKAMURI; MUTHIAH; SRIDHAR, 2020), as illustrated 

in equation 25: 

β = median �xj − xi

j − i
� , for j > i       Eq. 25 

where: 1 <  𝑠𝑠 <  𝑗𝑗 <  𝑛𝑛, and  𝑛𝑛 is the duration of the data. 
 

3.2.4.2 Mann–Kendall test of pre-whitened time series data having a serial correlation. 

The detection of trends in hydrometeorological data through the Mann-Kendall test 

commonly applied is challenged by the presence of the autocorrelation component in the series, 

given the fact that the positive autocorrelation inflates the probability of detecting trends when, 

in fact, there is no trend between them (BLAIN, 2013; DOS SANTOS et al., 2020).  
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Trendless pre-bleaching is a useful technique that has been used to eliminate the 

influence of serial correlation in the Mann-Kendall (MK) test in hydrological time series trend 

detection studies (YUE; WANG, 2002). 

To this end, a process of autoregressive lag-1 (AR(1)) of time series was proposed 

before the application of the MK test to evaluate the importance (STORCH, 2001), to which 

the method is known as pre-bleaching, to remove the serial correlation of the time series as 

follows: 

 Xt′ =  Xt −  r1Xt−1,         Eq. 26 

where is the serial lag-1 correlation coefficient of the sample data, and is formulated as 

follows: 𝑟𝑟1 =  
1

𝑛𝑛−1
∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑥𝑥𝑖𝑖+1− 𝑥𝑥)���𝑛𝑛−1
𝑖𝑖=1
1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1

       Eq. 27 

when satisfying the following condition −1−1.645√𝑛𝑛−2
𝑛𝑛−2

 ≤  𝑟𝑟1 ≤  1+1.645√𝑛𝑛−2
𝑛𝑛−2

, then the time series 

is considered independent at the significance level of 10%, with no need for pre-bleaching.  To 

remove the trend in time series data, the following equation is used. 

 Xt
' = Xi-(β x i),         Eq. 28 

The removal of the lag-1 AR component in decompensated series is calculated by the following 

equation:  Yt′ =   Xt′ − (𝑟𝑟1  x  Xt−1′ ),      Eq. 29 

The value added to the rest of the series. (β x 𝑠𝑠) is 𝑦𝑦𝑠𝑠 =  𝑦𝑦𝑠𝑠′ + (𝛽𝛽 𝑥𝑥 𝑠𝑠),   Eq. 30 

To find out the significance of the trend in the remaining series, the MK test is applied. 

 

3.2.4.3 Bias corrected pre-whitening MK test. 

 In this test, the time series assumes that it follows a first-ordered serial correlation 

process, including a linear trend that can be modeled as: x𝑡𝑡 =  x1,x2, … , x𝑛𝑛 

x𝑡𝑡 =  ρx𝑡𝑡−1, +  α +  βt + ε𝑡𝑡       Eq. 31 

Where  x𝑡𝑡  𝑃𝑃𝑛𝑛𝑒𝑒 x𝑡𝑡−1, are observations in 𝑡𝑡 𝑃𝑃𝑛𝑛𝑒𝑒 𝑡𝑡 − 1  periods, respectively; ρ the serial 

correlation coefficient; α is the constant intercept term.  The estimated values of ρ,α, and β  are 

given by calculating the following matrix: [ρ α β]T= �ZTZ�
-1

ZTy    Eq. 32 

where Z is the matrix size (𝑛𝑛 − 1).3 whose second column contains (𝑛𝑛 − 1) values equal to 1, 

and the third column contains the numbers 2 to 𝑛𝑛, and 𝑦𝑦 is a vector of size (𝑛𝑛 − 1).1 containing 

the observations x2 to x𝑛𝑛. The bias-corrected serial correlation ρ∗ (HAMED, 2009; VAN 

GIERSBERGEN, 2005) used in corrected pre-bleaching studies and trend detention, is 

calculated using the following equation 33: 

 𝜌𝜌∗ =  𝑛𝑛𝜌𝜌+2
𝑛𝑛−4

         Eq. 33 
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3.2.4.4 Spearman’s rank correlation (SRC) test 

Spearman's Rho (BINET, 1904), is another widely used nonparametric test. This method 

tests the strength and direction (positive or negative) of the correlation (relationship or 

connection) between two variables (SEDGWICK, 2014). The power of this test is comparable 

to the Mann-Kendall test (YUE; WANG, 2002). For a given x𝑠𝑠 =  x1,x2, … , x𝑛𝑛 time series, the 

statistic is based on the rSRC (spearman rank correlation coefficient) given as follows: 

𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −  �6∑ 𝑑𝑑𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
𝑛𝑛 (𝑛𝑛2−1)

�        Eq. 34 

where 𝑠𝑠 represents chronologic order, 𝑛𝑛 is the number of data points in the time series; 𝑒𝑒𝑠𝑠 =

 𝑅𝑅𝑋𝑋𝑠𝑠 −  𝑅𝑅𝑌𝑌𝑠𝑠, 𝑅𝑅𝑋𝑋𝑠𝑠 is the ranking of the variable, which 𝑥𝑥𝑠𝑠 is the chronological order of the 

observations. The 𝑦𝑦𝑠𝑠 observation series is transformed into its equivalent 𝑅𝑅𝑋𝑋𝑠𝑠 by assigning the 

chronological order in the ranked series, where the average classification is considered for the 

draws. The test statistic is given by the following equation:  

𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆   �
(𝑛𝑛−2)

(1−𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆
2 )

       Eq. 35 

The null hypothesis does not imply that the tendency is 𝑡𝑡𝑣𝑣,𝛼𝛼/2 <  𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑡𝑡𝑡𝑡𝑣𝑣,1−𝛼𝛼 /2, accepted 

where the t-student distribution test with 𝑣𝑣 = 𝑛𝑛 − 2 degrees of freedom, and 𝛼𝛼 level of 

significance. 

 

3.2.5 Future climate change scenarios 

To project the possible future impacts on hydrological processes due to climate change 

in the São Francisco River basin, simulated climate data of NASA Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP), under two Representative Concentrative Pathways 

(RCP)12: RCP 4.5 and RCP 8.5, were used in this study.  

This data was made available by the Indian team, as part of the ongoing multilateral 

BRICS research project, titled “Integrated Water Management Model for Brazil, India, and 

South Africa under climate change scenarios” (BURI et al., 2022; PATAKAMURI; 

MUTHIAH; SRIDHAR, 2020). 

 

3.2.6 Statistical Bias Correction Method 

In this work, the Linear Scaling (LS) method was applied to bias-correct downscaled 

precipitation and temperature data of an ensembled model from nine climate models. This 

technique was chosen after a literature review (TEUTSCHBEIN; SEIBERT, 2012), which 

evaluated five bias correction methods for precipitation and four bias correction techniques for 

 
12These RCPs are based on assumed natural and anthropogenic radiative forcing through the end of the 21st -
century. 
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temperature, and according to other studies (ANDRADE et al., 2021), linear scaling is suitable 

both for precipitation and temperature. 

The trendline correction procedures are used to minimize the discrepancy between 

observed and simulated climatic variables in a daily time step so that the hydrological 

simulations conducted by corrected simulated climatic data correspond to the simulations using 

observed climatic data reasonably well (RATHJENS et al., 2016). 

To this end, the Climate Model Data for Hydrologic Modeling (CMhyd) (RATHJENS 

et al., 2016), can be applied to extract and correct (correct) data obtained from global and 

regional climate models with the observed data, given the difficulty in using simulated climatic 

data as direct input data for hydrological models. 

For bias removal for the projected climatic data, the CMhyd model needs observed data, 

historical data, and Climate Change Projections for South America, adopting the Linear Scaling 

(LS) technique, which uses monthly correction values established in the differences between 

observed and historical simulated data (ANDRADE et al., 2021; TEUTSCHBEIN; SEIBERT, 

2012, 2013), according to below-given equations 36 to 39. 

P*
contr (d)=Pcontr(d). � μm(Pobs(d))

μm(Pcontr(d))
�      Eq. 36 

 

P*
scen (d)=Pscen(d). � μm(Pobs(d))

μm(Pcontr(d))
�      Eq. 37 

 

T*
contr (d)=Tcontr (d) + μm �Tobs(d)� –  μm (Tcontr(d))   Eq. 38 

 

T*
scen (d)=Tscen(d) + μm �Tobs(d)� –  μm (Tcontr(d))    Eq. 39 

 

where: P(d) and T(d) are daily precipitation and temperatures, respectively; μm is the 

monthly mean value of the variable m; and "𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑟𝑟", "𝑜𝑜𝑐𝑐𝑃𝑃𝑛𝑛" and "𝑜𝑜𝑜𝑜𝑜𝑜", refer to the control 

(baseline period), scenarios and observed data, respectively. 

 

In the LS approach, bias-corrected simulation data should agree, in their monthly 

average values, with the observed data and a factor based on the ratio of long-term monthly 

average observed and control run data is used for adjustment of precipitation and temperature 

variable (ANDRADE et al., 2021), being expected that these factors will continue unvaried 

under future conditions of the study area basin (TEUTSCHBEIN; SEIBERT, 2013). 

The observed precipitation and temperature data comprised ten representative stations, 

distributed throughout the SFRB (referred to in chapter 3 of this thesis), both chosen based on 

the Principal Component Analysis (PCA) (EDWARDS; CAVALLI SFORZA, 1965).  



 

115 
 

This PCA approach is determined as a linear combination of the original variables, to 

help reduce the dimensionality of the data set and determine the variables that better explain 

the variability of the data with a lesser number of variables (TEIXEIRA et al., 2021). 

The simulated historical data corresponding to the same period came from the historical 

series of the ensemble climate data.  

 

3.2.7. Bilinear interpolation and IDW 

To bring the same resolution for both precipitation and temperature datasets, a bilinear-

interpolation technique was applied. For generating spatial plots, inverse distance weighting 

(IDW) geostatistical interpolation explicitly technique (BARTIER; KELLER, 1996), which 

assumes that things that are close to one another are more alike than those that are farther apart, 

was used by considering the Z-value of respective trend tests. 

To predict a value for any unmeasured location, IDW uses the measured values 

surrounding the prediction location (BISWAS et al., 2020). The measured values closest to the 

prediction location have more influence on the predicted value than those farther away.  

The IDW technique assumes that each measured point has a local influence that 

diminishes with distance (BARTIER; KELLER, 1996). It gives greater weights to points closest 

to the prediction location, and the weights diminish as a function of distance, hence the name 

inverse distance weighted.  

The annual analysis was carried out for the entire study area. However, given the great 

heterogeneous along the basin with four climatic types (FILHO et al., 2018; MARQUES; 

GUNKEL; SOBRAL, 2019), trend analysis in the dry, rainy, and pre-season periods was 

performed, in a sub-region subdivided by Lower (S1 and 2), Middle and Sub-Middle (S2 – S6), 

and Upper São Francisco (S7 – S10), as shown in table 13, and spatially scattered in Figure 9. 

 
Table 13: Sub-regions and stations for trend analysis in the dry, rainy, and pre-season periods 
Region (stations) Season Period Chosen month 

 
Lower (S1 and S2) 

 

Dry May – October July 
Rainy November – April January 

Pre-season October 
 

Middle and Sub-Middle 
(S3 – S6) 

Dry June – November September 
Rainy December – May February 

Pre-season November 
 

Upper (S7 – S10) 
 

Dry September – February November 
Rainy March-August May 

Pre-season February 
Source: adapted from (ASSIS et al., 2022; FREITAS et al., 2022; GALVÍNCIO, 2000; 

MUTTI, 2020; SIQUEIRA; SIQUEIRA; FILHO, 2022). 
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Figure 9: Spatial distribution of selected stations along the São Francisco River basin 
 

The methodology followed in this study, as shown in Figure 9, was demonstrated at a 

climate model grid point, and the same procedure was followed for the remaining grid points 

of the study area. 

 

3.3 Results and Discussion 

At each grid point, the net strength of each RCM was evaluated using suitable 

performance indicators for precipitation and temperature data, as presented in Figure 10 and 

Appendix A. These weighting schemes were applied to find the best historical fit of three 

climate variables (precipitation, and minimum and maximum temperature). 

As a results, each point on the scatter plot is each nine model's weight (Va) of nine 

models based on their performance in creating the multi-model, for precipitation (a), minimum 

(b) and maximum (c) temperature, presented in Figure 11. The x-axis is the accuracy when the 

weights of each of the nine climatic models are averaged (i.e., its weight in the creation of the 

multi-model) while the y-axis, represents each of the 10 points selected for the present study. 

The various model weights from each scheme were calculated, and the derived sets of 

weights were then applied to create ensemble means for three variables. 
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Figure 10: Performance analysis of RMSD and NRMSD metrics of precipitation (a), and minimum (b) and maximum temperature (c) for 9 RCMs in 10 

points 
 

(a) (b) (c) 
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Figure 11: Models weights (Va) for precipitation (a), and minimum (b) and maximum temperature (c) based on their 

individual performance to create the multi-model 
 

While the ensembles often perform slightly more than individual models, among nine 

models considered in this study, when evaluated by RMSD, NRMSD metrics (Figure 10), and 

ANMBD, CC, and NSE metrics (Appendix A), the EC.EARTH model had greater weight for 

precipitation (a) and maximum temperature (c), differently for the SHMI.ESM model which 

had greater weight for the minimum temperature (b) to create the multi-model. 

 
3.3.1 Analysis of observed trends in precipitation 

Appendix B represents the variations of annual average p precipitation (a), minimum 

(b), and maximum temperature (c) for different periods under the RCP 4.5 and RCP 8.5 

scenarios, for the three sub-regions aforementioned in Table 13 and Figure 9. 

The Inverse Distance Weightage (IDW) interpolation technique was used to generate 

spatial plots in the spatial variation of Z-value and show grid points in four trend tests for the 

entire river basin (Figures 13, 18 and 19), and for three sub-regions (Lower, Middle, and Sub-

middle, and Upper), shown in Appendix C (Figures 1 – 8). 

Figure 12 demonstrates mean annual precipitation over the São Francisco River basin 

(in 10 selected stations), clearly indicating the variation in future periods under RCP 4.5 and 

RCP 8.5, compared to the observed period. 

 

(a) 

(c) 
(b) 
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Figure 12: Mean annual precipitation (mm) for the entire São Francisco River basin 

 

Due to the action of different large, meso, and local scale meteorological systems 

(OLIVEIRA; SANTOS E SILVA; LIMA, 2017), the rainfall regime in the basin presented high 

spatiotemporal variability (geographically and seasonally), indicating a well-defined annual 

cycle with wet and dry periods (FREITAS et al., 2022). The SFRB will certainly experience 

more rainfall and greater temperatures in the future for both emission scenarios, based on the 

results obtained in this study, which report a trend of increasing average annual precipitation in 

the two future periods under the RCP 4.5 and RCP 8.5 scenarios compared to the historical 

period (Figure 12). 

Similar agreement of a possible scenario increasing in magnitude and frequency of 

extreme precipitation (BEZERRA et al., 2019), was found with rainfall changes in various parts 

of South America by 2070–2100 (MANATSA; CHINGOMBE; MATARIRA, 2008; 

MARENGO et al., 2010), using different regional models, as well as the projected changes of 

rainfall from the IPCC AR4 multi-model ensemble for the same scenarios, and the rainfall 

projections derived from Eta-CPTEC by the end of the 21st-century, showing increases in 

rainfall in southeastern South America (MARENGO et al., 2012). 

This increasing trend is influenced by different atmospheric systems (POLZIN; 

HASTENRATH, 2014), such as the Intertropical Convergence Zone (ITCZ) (PAREDES-

TAVARES et al., 2018), Easterly Wave Disturbances (EWD) (GOMES et al., 2015) Frontal 

Systems (FS) in the São Francisco river basin, and South Atlantic Convergence Zone (SACZ) 

(MARENGO; TORRES; ALVES, 2017; SIQUEIRA; SIQUEIRA; FILHO, 2022; 

VALVERDE; MARENGO, 2014), the influences of tropical climatic phenomena (FERREIRA 

et al., 2021), and the El Niño phenomenon, which interferes in the rainy season between the 

years (ANDREOLI; KAYANO, 2005). 
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This increasing trend of precipitation when evaluated through four (4) non-parametric 

trend tests adopted in this study (Figure 13), the Mann-Kendall Test (MK) showed an increasing 

trend in the Upper, Medium, and Sub-medium São Francisco, and a high correlation was 

evidenced by the Spearman correlation test, even after eliminating possible adverse effects of 

autocorrelation in the MK test and Spearman's rho trend tests, through the Mann-Kendall Test 

of Pre-Whitened (PWMK) test. 

 

Figure 13: Spatial variation of Z-value and trend showing grid points in four trend tests of 
precipitation data annual period over the São Francisco River Basin 

 

Figures 14 – 16, show the stations-wise mean monthly precipitation (mm) in the dry (a), 

rainy (b), and pre-season (c) periods, over the São Francisco River basin (Lower, Middle, and 

Sub-Middle, and Upstream sub-regions). 

In the lower São Francisco region affected by easterly wave disturbances and sea and 

land breezes (REBOITA et al., 2010), the lowest precipitation values were observed in the pre-

season period, which jointly with the dry period, recorded lower precipitation values when 

compared to the observed period, differently from the rainy period, which observed an increase 

in means monthly precipitation for both RCPs. 

These results are consistent with the historical phenomenon of rainfall deficit registered 

during the dry summer of 2001, which reached up to 40% in most of central (FREITAS et al., 
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2022), northeastern, and southeastern Brazil, resulting in a significant reduction in river 

streamflow throughout this regions, thereby reducing the capacity to produce hydroelectric 

power in these areas, and compromising the amount of water available along the basin 

(FREITAS et al., 2022). 

The alignment of these results can also be verified in the consequence of the multiyear 

drought, for the period 2014–2019 observed rainfall in the São Francisco basin reported in the 

past (DE JONG et al., 2021), was 37% below if compared to its 1961–1990 baseline average 

and consequently observed streamflow declined by approximately 60%. 

Further, the São Francisco River basins’ streamflow and hydroelectric production could 

potentially cease in the second half of the 21st century (DE JONG et al., 2021). Therefore, to 

face the upcoming scenarios of climate change, impositions of energy conservation measures 

from the government side will be required to avoid total loss of power (blackouts), as well as 

the reconfiguration in the NE electrical matrix shortly, considering economic, technical and 

social environmental constraints (BARBOSA et al., 2021). 

Alternatively, the design of PV-hydro hybrid systems (based on complementary 

resources) for providing energy (VASCO et al., 2019), can be explored as an effective strategy 

to cope with future climate change scenarios, and supply water for irrigation (among other uses) 

as the major component of water demand accounted for 67% of the total demand (TEIXEIRA 

et al., 2021). 

  

 
Figure 14: Station-wise means monthly precipitation (mm) in the dry (a), rainy (b), and pre-

season (c) periods over Lower São Francisco 
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A station-wise mean monthly precipitation (mm) analysis over Middle and Sub-Middle 

São Francisco presented in Figure 5, shows a decreasing trend in rainfall in the dry and pre-

season periods, the precipitation values in two future periods will decrease if compared to those 

historically observed in both RCPs. Similar negative trend or decreasing trends in annual 

precipitation were detected by (FABIANA MEIJON FADUL, 2019) and (ANA LÚCIA 

BEZERRA CANDEIAS, 2021) while analyzing the two river basins in the Sertão region of the 

State of Pernambuco in the years between 1964 – 2004, and in the State of Ceará, using 23 

rainfall stations between 1974 and 2003, respectively. 

The greatest variations occurred in the rainy season, with emphasis on the predominance 

of positive anomalies were also reported (SALES et al., 2015), in their study on precipitation 

and temperature projections for the Brazilian Northeast, considering the CMIP5 models and the 

RCP8.5 scenario. 

These results’ alignment, also can be seen with the report of the Brazilian Panel on 

Climate Change (PBMC, 2013), stating that the Northeastern semiarid region of Brazil is likely 

to have its precipitation reduced by 20% in 2040, and highlighting that the more intense in the 

Northern part of the region, mainly located in the State of Pernambuco (ASSIS et al., 2022). 

Differently in the rainy period, observed precipitation values for future periods were 

high in both RCPs. All of this variation in precipitation in the region is due to large-scale 

circulation, whereas the rainfall intensity may be influenced by climate variability (ASSIS et 

al., 2022). 

Based on the exposed above, it is noted that the reported reduction in rainfall in the 

Middle and Sub-Middle São Francisco regions corroborates with the past aforementioned 

studies, a persisting problem in the semiarid region of the Brazilian Northeast, which is 

currently facing its worst drought in decades (ASSIS et al., 2022). 
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Figure 15: Station-wise mean monthly precipitation (mm) in the dry (a), rainy (b), and pre-

season (c) periods over Middle and Sub-Middle São Francisco 
 

In the Upstream São Francisco in Minas Gerais State, where the weather systems are 

associated with the South Atlantic Convergence Zone (SAZC), FS, LI, CCM, and isolated 

convection (SIQUEIRA; SIQUEIRA; FILHO, 2022), the precipitation monthly averages 

presented in Figure 6, showed lowest precipitation values for two future periods will be 

observed in the pre-season period, which also showed an increasing trend in the precipitation 

values in both future periods and RCPs. While for the dry and rainy periods, there will be 

decreasing trends, in two considered scenarios. 

To face these upcoming water demand increases in the Upper and Middle (and water 

scarcity in the sub-Middle and Lower) due to the irrigated areas to be expanded in the next 

decades, there is needed a public policy of incentives on improving the mobility of cropland to 

increase water conservation for irrigation (FACHINELLI FERRARINI et al., 2020); and 

policies for preventing water losses as well as expanding new irrigation techniques; developing 

alternate sources, such as rainfall harvest by small reservoirs and reuse of return flow in 

farming. 
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Figure 16: Station-wise mean monthly precipitation (mm) in the dry (a), rainy (b), and pre-

season (c) periods over Upper São Francisco 
 

 

3.3.2. Analysis of observed trends in temperature 

Figure 17 demonstrates a mean annual minimum and maximum temperature (ºC) over 

the São Francisco River basin (in 10 selected stations), clearly indicating the variation in future 

periods under RCP 4.5 and RCP 8.5, compared to the observed period.  

 
 

 
Figure 17: Mean annual minimum (a) and maximum (b) temperature (ºC) for the entire São 
Francisco River basin 
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Compared to the historical period, the results showed increasing minimum and 

maximum temperature values in the two future scenarios, and both RCPs. Higher annual 

averages, both for the minimum temperature and the maximum temperature, were observed in 

the Lower, Medium, and Sub-Medium São Francisco. 

These results corroborate those obtained comparing 27 CMIP5 models for the São 

Francisco River Basin (SILVEIRA et al., 2016), all of which showed a positive trend (increase) 

in temperature in the period from 2011 to 2100, but more significant between 2041 and 2100. 

In all of them, the 8.5 scenarios showed a higher positive trend than the 4.5 RCP scenario.  

When compared through four (4) no-parametric trend tests used in this work, the 

increasing trend minimum temperature was evidenced by the Mann-Kendall Test (MK), and 

the Spearman correlation test shows a strong trend correlation except for station S7 which 

showed a decreasing trend. 

 

Figure 18: Spatial variation of Z-value and trend showing grid points in four trend tests of 
minimum temperature data annual period over the São Francisco River Basin 
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Figure 19: Spatial variation of Z-value and trend showing grid points in four trend tests of 

maximum temperature data annual period over the São Francisco River Basin 
 

3.3.3 Analysis observed trends in minimum temperature 

Figures 20 – 22, show the stations-wise mean monthly minimum temperature in the dry 

(a), rainy (b), and pre-season (c) periods, over the São Francisco River basin (Lower, Middle, 

and Sub-Middle, and Upstream sub-regions).  

For the Lower São Francisco, the station-wise mean monthly minimum temperature will 

increase over the two future periods, when compared to the historical observed period, in both 

future RCPs. 
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Figure 20: Station-wise mean monthly minimum temperature (ºC) in the dry (a), rainy (b), and 
pre-season (c) periods over Lower São Francisco 
 

For the Middle and Sub-Middle São Francisco, the obtained results compared to the 

observed period, the monthly average of the minimum temperature will increase over the two 

future periods, regardless of the RCP to be considered. 

  

 
Figure 21: Station-wise mean monthly minimum temperature (ºC) in the dry (a), rainy (b), 

and pre-season (c) periods over Middle and Sub-Middle São Francisco 
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Figure 22: Station-wise mean monthly minimum temperature (ºC) in the dry (a), rainy (b), 

and pre-season (c) periods over Upper São Francisco 
 

3.3.4 Observed trends in maximum temperature 

Figure 24, presents a station-wise mean maximum temperature (ºC) analysis over 

Middle and Sub-Middle São Francisco, showing an increasing average annual maximum 

temperature in the two future periods under the RCP 4.5 and RCP 8.5 scenarios if compared to 

the historical observed period. 
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Figure 23: Station-wise mean monthly maximum temperature (ºC) in the dry (a), rainy (b), 

and pre-season (c) periods over Lower São Francisco 
 

These results corroborate with the ones found evaluating climate change detention 

indices for the Bahia State between 1970 and 2006 (SILVA; AZEVEDO, 2012); and diagnosed 

that the number of days with daily maximum temperature increased, while the daily rainfall and 

total annual precipitation reduced. Also, a faster increase of daily maximum temperature due to 

the climate change scenarios for 2010 – 2050, over Northeastern compared to that simulated 

for the recent past was reported (BURI et al., 2022), indicating aridification processes. 

  

 
Figure 24: Station-wise mean monthly maximum temperature (ºC) in the dry (a), rainy (b), and pre-
season (c) periods over Middle and Sub-Middle São Francisco 
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and the Spearman correlation tests showed a strong trend correlation except for station S7 which 

showed a decreasing trend. 

  

 
Figure 25: Station-wise mean monthly maximum temperature (ºC) in the dry (a), rainy (b), and 
pre-season (c) periods over Upper São Francisco 
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3.4 Conclusions 

This study analyzes long-term trends in precipitation and temperature data sets 

(maximum and minimum values) projected by NEX-GDDP in the São Francisco River Basin 

under RCP 4.5 and RCP 8.5 scenarios. 

The 9 RCMs available were compiled using the REA method and biased at each grid 

point for the historical (1961 - 2005) and future (2006 - 2100) periods for the annual, drought, 

wet, and pre-season periods using the CMhyd model. Four different methods, namely the 

Mann-Kendall test, Mann-Kendall pre-brightening test, bias-corrected pre-brightening process, 

and Spearman correlation, were used to detect precipitation trends as well as maximum and 

minimum temperature data sets. 

Performance analysis of various metrics was evaluated, and model weights were 

assigned. The spatial and temporal variations of the mean annual fluctuations in different 

periods was studied. 

Throughout the SFRB, precipitation and maximum and minimum temperatures increase 

compared to the observation period (1961 – 2005). When analyzed by subregion, results show 

an increasing trend in monthly average minimum and maximum temperatures in the northern 

region of the SFRB, while average monthly precipitation increases during the rainy season. Pre-

season preparations in Upper San Francisco. The high correlation of these trends was also 

demonstrated by comparing the four nonparametric trend tests used in this study. 

In the context of climate change, the uncertainties associated with RCMs and scenarios 

need to be assessed in order to implement effective management practices and make informed 

decisions. The results are used as input to hydrological and water resource management models 

under climate change scenarios. 
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Appendix A: Performance analysis of ANMBD, CC, and NSE metrics of precipitation (a), minimum (b), and maximum temperature (c) for 9 RCMs in 10 
points. 

   

   

   

(a) (b
 

(c
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Appendix B: Variation of annual average precipitation (a) minimum (b), and maximum temperature (c) for different periods 

under the RCP 4.5 and RCP 8.5 scenarios. 

(a)  

Scenario Station Region 1961 - 2020 2021 - 2059  2060 - 2100 V1 V2 V3 

(T1) mm (T2) mm (T3) mm (T2-T1) mm (T3-T2) mm (T3-T1) mm 

 

 

 

 

 

RCP 4.5 

S1  

Upper  

3609.53 3770.70 3763.13 161.17 -7.57 153.59 

S2 1388.90 1475.72 1500.92 86.81 25.21 112.02 

S3  

 

MSM 

1071.25 1134.01 1203.85 62.76 69.84 132.60 

S4 1194.32 1267.09 1338.51 72.77 71.42 144.19 

S5 983.62 1003.51 1072.00 19.89 68.50 88.39 

S6 1034.00 1104.90 1204.34 70.90 99.44 170.34 

S7  

Lower 

728.87 748.31 784.22 19.45 35.91 55.35 

S8 1283.80 1368.45 1427.85 84.65 59.40 144.06 

S9 2041.58 2088.41 2139.46 46.83 51.06 97.88 

S10 813.25 794.30 808.53 -18.94 14.22 -4.72 

 

 

 

 

 

RCP8.5 

S1 Upper  3599.59 3791.37 3840.49 191.78 49.12 240.90 

S2 1389.79 1506.43 1596.01 116.64 89.58 206.22 

S3  

 

MSM 

1072.85 1193.43 1319.57 120.58 126.14 246.72 

S4 1189.64 1324.11 1461.23 134.47 137.12 271.59 

S5 986.07 1047.81 1124.21 61.74 76.41 138.14 

S6 1040.53 1158.44 1244.76 117.91 86.32 204.23 

S7  

 

Lower 

726.44 757.75 810.21 31.31 52.46 83.77 

S8 1286.62 1412.40 1560.88 125.78 148.48 274.26 

S9 2041.58 2088.41 2139.46 46.83 51.06 97.88 

S10 813.25 794.30 808.53 -18.94 14.22 -4.72 
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(b)         

Scenario Station Region 1961 - 2020 2021 - 2059  2060 - 2100 V1 V2 V3 

(T1) °C (T2) °C (T3) °C (T2-T1) °C (T3-T2) °C (T3-T1) °C 

 

 

 

 

 

RCP 4.5 

S1 Upper  21.74 22.97 23.53 1.23 0.57 1.79 

S2 22.24 23.59 24.29 1.34 0.70 2.05 

S3  

 

MSM 

21.36 22.62 23.29 1.26 0.66 1.93 

S4 21.69 22.95 23.66 1.26 0.71 1.97 

S5 20.04 21.31 22.05 1.27 0.74 2.01 

S6 19.83 21.17 21.93 1.34 0.76 2.10 

S7  

 

Lower 

18.56 19.93 20.68 1.37 0.75 2.13 

S8 17.20 18.61 19.42 1.41 0.81 2.22 

S9 17.09 18.45 19.21 1.37 0.75 2.12 

S10 16.01 17.42 18.18 1.41 0.76 2.17 

 

 

 

 

 

RCP 8.5 

S1 Upper  21.74 23.24 24.44 1.50 1.20 2.69 

S2 22.24 23.90 25.64 1.66 1.74 3.40 

S3  

 

MSM 

21.36 22.93 24.57 1.57 1.64 3.21 

S4 21.69 23.28 25.03 1.58 1.75 3.33 

S5 20.05 21.65 23.52 1.60 1.87 3.47 

S6 19.84 21.52 23.48 1.68 1.96 3.64 

S7  

 

Lower 

18.57 20.26 22.28 1.70 2.02 3.72 

S8 17.21 18.98 21.10 1.77 2.12 3.89 

S9 17.10 18.80 20.81 1.71 2.01 3.72 

S10 16.02 17.77 19.81 1.75 2.04 3.79 
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(c)         

Scenario Station Region 1961 - 2020 2021 - 2059  2060 - 2100 V1 V2 V3 

(T1) °C (T2) °C (T3) °C (T2-T1) °C (T3-T2) °C (T3-T1) °C 

 

 

 

 

 

 

RCP 4.5 

S1 Upper  31.20 32.20 32.77 1.00 0.57 1.57 

S2 33.21 34.33 34.93 1.20 0.61 1.72 

S3  

 

MSM 

32.10 33.23 33.78 1.12 0.56 1.68 

S4 32.19 33.40 33.99 1.21 0.59 1.80 

S5 33.27 34.56 35.12 1.29 0.57 1.85 

S6 32.61 33.89 34.42 1.27 0.53 1.80 

S7  

 

Lower 

31.56 32.89 33.46 1.33 0.57 1.90 

S8 28.18 29.60 30.26 1.42 0.65 2.07 

S9 29.46 30.86 31.51 1.40 0.65 2.04 

S10 29.67 31.03 31.65 1.36 0.62 1.97 

 

 

 

 

RCP 8.5 

S1 Upper  31.20 32.43 33.74 1.23 1.31 2.54 

S2 33.22 34.60 36.01 1.38 1.40 2.79 

S3  

 

MSM 

32.12 33.50 34.74 1.38 1.24 2.62 

S4 32.20 33.69 34.94 1.49 1.24 2.73 

S5 33.29 34.83 36.09 1.54 1.26 2.80 

S6 32.64 34.13 35.32 1.49 1.19 2.68 

S7  

 

Lower 

31.59 33.15 34.50 1.56 1.36 2.92 

S8 28.21 29.90 31.42 1.70 1.52 3.22 

S9 29.48 31.14 32.73 1.66 1.59 3.25 

S10 29.69 31.29 32.90 1.59 1.61 3.20 
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Appendix C: Spatial variation of Z-value and trend showing grid points in four trend tests for 
three sub-regions for the entire São Francisco River basin 
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Figure 1: Spatial variation of Z-value and trend showing grid points in four trend tests of precipitation data in the dry (a), rainy (b), and 
pre-season (c) periods over Upper São Francisco 

  

 

a b 

c 
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Figure 2: Spatial variation of Z-value and trend showing grid points in four trend tests of precipitation data in the dry (a), rainy (b), and pre-season (c) 

periods over Middle and Sub-Middle São Francisco 

a b 

c 



 

146 
 

  

 
Figure 3: Spatial variation of Z-value and trend showing grid points in four trend tests of precipitation data in the dry (a), rainy (b), and 

pre-season (c) periods over Lower São Francisco. 

a b 

c 
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Figure 4: Spatial variation of Z-value and trend showing grid points in four trend tests of minimum temperature data in the dry (left) and rainy (right) 

periods over Upper São Francisco. 

a b 
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Figure 5: Spatial variation of Z-value and trend showing grid points in four trend tests of minimum temperature data in the dry (a), 

rainy (b), and pre-season (c) periods over Middle and Sub-Middle São Francisco. 
 

a b 
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Figure 6: Spatial variation of Z-value and trend showing grid points in four trend tests of minimum temperature data in the dry (a), rainy (b), 

and pre-season (c) periods over Lower São Francisco. 

a b 
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Figure 7: Spatial variation of Z-value and trend showing grid points in four trend tests of maximum temperature data in the dry (a), rainy (b), 
and pre-season (c) periods over Upper São Francisco. 

a b 
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Figure 8: Spatial variation of Z-value and trend showing grid points in four trend tests of maximum temperature data in the dry (a), 

rainy (b), and pre-season (c) periods over Lower São Francisco.

a b 
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CHAPTER IV 
Climate change impact assessment on water 
resources in the São Francisco River 
Basin13 
 

Abstract 

Climate change is one of the most important factors that directly impact water resources, 

affecting both water quantity and water quality. The objective of this study was to use the 

SWAT model and a multi-model ensemble to investigate the effects of projected climate 

scenarios on the São Francisco River Basin (SFRB) water balance. The hydrological SWAT 

model used in this chapter was calibrated as part of his ongoing BRICS multilateral research 

project entitled “Integrated water management model for Brazil, India, and South Africa under 

climate change scenarios”. Climate change scenarios were analyzed using climate-related data 

for three time periods and a delta-based statistical downscaling approach for two representative 

concentration pathways (RCPs), RCP 4.5 and RCP 8.5. The results show that water balance 

patterns in the SFRB can be strongly influenced by future climate change scenarios. Processes 

that are expected to increase over time are evapotranspiration, infiltration, base flow, and water 

yield; in contrast, potential evapotranspiration is expected to decrease. The results also predict 

that the average monthly water flow will decrease over time until the end of the 21st-century. 

The results of this study will help water resource managers reduce future risks associated with 

climate change in the study area and will also help public authorities address agroecological 

risks in this and other areas. It can also be used by environmental and water decision-makers 

designing policies. Similar waters around the world. 

 

Keywords: climate change, water resources, water balance, water yield, evapotranspiration, 

evapotranspiration, percolation, groundwater contribution, streamflow dynamic. 

 

 

 

 

 
13A modified version of this chapter will be shortly submitted to a peer-review international journal. 
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4.1 Introduction 

Climate change has been recognized as one of the main 21st-century environmental 

problems throughout the world (ASHRAF VAGHEFI et al., 2017; LIU et al., 2017), being 

identified as a major socioeconomic challenge both globally and regionally (PAREDES-

TAVARES et al., 2018). 

However, river basins across the globe are experiencing varying degrees of impact from 

global climate change events (PANDEY et al., 2019), which have increased in frequency and 

intensity in recent years (CUNHA et al., 2019). The São Francisco River is one of the main 

surface water resources in Brazil and is facing environmental challenges that threaten its 

sustainability (BETTENCOURT et al., 2022). 

The Intergovernmental Panel on Climate Change-IPCC Fourth (AR4) and Fifth (AR5) 

Assessment Reports highlight the regions on Earth that are more vulnerable to climate change 

(NETO et al., 2016). Due to demographic changes (CARLUCCI et al., 2020), some climate 

change scenarios were projected, such as rainfall (e.g. increase or decrease of the total annual 

precipitation), dryness, or wetness that in the long term affect the basin-scale water budget 

(NETO et al., 2016). 

These are expected not only to affect the intensity and frequency of extreme events in 

the next decades but also to amplify existing socioenvironmental risks in urban areas (ALVES 

et al., 2020; PAULO et al., 2016), uncertainties and tension between water availability and 

water demand–energy–food (WEF) production, as well as, for ecosystems services, on regional 

and local scales (GESUALDO et al., 2019; WOZNICKI; NEJADHASHEMI; PARSINEJAD, 

2015). 

With the increasing scarcity of water resources, especially in arid and semi-arid areas, 

the hydrological impacts of climate uncertainties, particularly on surface runoff are drawing 

increasing attention from hydrological researchers, and policymakers (PANDEY et al., 2016; 

WANG et al., 2013; YIN et al., 2016). Modeling studies were undertaken in many different 

environments (ARNELL; GOSLING, 2013; BASIN et al., 2016; GUDMUNDSSON et al., 

2012; RANGE et al., 2011), showing that climate change has the potential to modify 

substantially river flow regimes (JÚNIOR; TOMASELLA; RODRIGUEZ, 2015), altering 

hydrological processes. 

The key climate variables influencing streamflow, are precipitation and temperature 

(DELMONTE OLIVEIRA; TOMASELLA; DEL’ARCO SANCHES, 2019), with the effect of 

the latter, manifested largely through altered evapotranspiration and snowmelt (PATTERSON; 

LUTZ; DOYLE, 2013), interception, and infiltration (FLEISCHMANN et al., 2019), resulting 

in spatial-temporal alterations of the water cycle (MARHAENTO; BOOIJ; HOEKSTRA, 
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2018). The increase in temperature, variations in precipitation, and changes in the frequency of 

extreme events increase the probability of flood occurrences and change the total and seasonal 

water supply (KHALILIAN; SHAHVARI, 2018). The nature of the evaporating material and 

the spatiotemporal variations in the area affect the evapotranspiration rate due to complications 

in physical characteristics and climatic settings (NESRU; NAGARAJ; SHETTY, 2020). 

The spatial variability of precipitation influences meltwater regimes, and surface water 

and groundwater recharge may be directly affected by changes in rainfall and increases in air 

temperature that cause higher evapotranspiration rates (NETO et al., 2014). The occurrence 

of these processes may turn affect the availability of water for the rivers downstream (SU et 

al., 2015), and its management, with more frequent and extended droughts, more severe 

floods, and lower water quality (ORTIZ-PARTIDA et al., 2020). 

On the other hand, the spatial-temporal patterns that characterize the hydrological 

response of a watershed to climate change will be highly different due to the combined effects 

of natural processes and human influences (WANG; SUN; ZHAO, 2019). These may include, 

climatic conditions and meteorological forcing (WANG et al., 2018), physiological 

characteristics related to soil (WANG et al., 2011), vegetation, geological and topographical 

elements (HU; SI, 2014), relief, and drainage network of the basins (NETO et al., 2016), and 

human activities (GAO; GUO, 2014; ZUCCO et al., 2014). 

Human activities can modify streamflow directly by affecting hydrological pathways or 

indirectly by disturbing soil‐atmosphere fluxes (DELMONTE OLIVEIRA; TOMASELLA; 

DEL’ARCO SANCHES, 2019). The direct human impacts on streamflow include land use 

changes, reservoir construction and operation, surface water and groundwater extraction, and 

return flow (WANG; HEJAZI, 2011). 

Given different climate changes around the world, Brazil cannot be excluded from these 

large-scale changes, the consequences of which are observed in many Brazilian basins 

(MONTENEGRO; RAGAB, 2012; NETO et al., 2016). Hence, climate change impacts on 

water resources are still needed due to the socio-global changes. As seen, very few studies have 

evaluated the effects of climate change on renewable water resources. Thus, in this work, the 

SWAT model (ARNOLD et al., 1998), was used to fill this gap in the literature, by investigating 

the hydrological responses of climate change scenarios in the São Francisco River Basin, Brazil. 

This will allow to development of water resources sustainable management plans 

(GESUALDO et al., 2019), aiming to assist policymakers in implementing appropriate 

prevention, adaptation, and mitigation strategies (FAKHRUDDIN et al., 2020; GAO et al., 

2016; GEBREMICAEL et al., 2013; SU et al., 2015).  
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4.2 Materials and Methods 

4.2.1 Study area description 

This work was developed at the São Francisco River basin, the largest river that runs 

entirely in Brazilian territory, and is the fourth longest in South America and in Brazil (after the 

Amazon, the Paraná, and the Madeira) (LUCAS et al., 2021a; NASCIMENTO DO VASCO; 

DE OLIVEIRA AGUIAR NETTO; GONZAGA DA SILVA, 2019; SIQUEIRA; SIQUEIRA; 

FILHO, 2022). It is an important river for Brazil, called "the river of national integration" not 

only because of the volume of transported water, linking southeast and northeast Brazil 

(LUCAS et al., 2021a) but also because it unites diverse climates and regions of the country, in 

particular, the Southeast with the Northeast (BEZERRA et al., 2019). 

The São Francisco River basin presents different types of climates according to 

Koppen’s classification (LUCAS et al., 2021a), ranging from Aw type – hot and humid with 

summer rains (in higher SFRB), Aw – also presenting another climatic variation BShw (in 

middle SFRB), BShw (semiarid) – with seven to eight dry months and an autumn rainfall 

regime with an annual total of about 550 mm, mainly concentrated between November and 

March (in sub-middle SFRB), and As – hot and humid with winter rains, and BSh (semiarid 

with a short-wet season) ( in lower SFRB) (LUCAS et al., 2021a; MARQUES; GUNKEL; 

SOBRAL, 2019).  

Soils with an aptitude for irrigated agriculture predominate in the São Francisco River 

Basin (MARQUES; GUNKEL; SOBRAL, 2019), with annual precipitations normally below 

800 mm irregularly distributed over the year (CARVALHO et al., 2020); as about 58% of the 

basin’s territory cross some of the driest parts of the Brazilian semiarid region, mostly in 

northeastern Brazil (DE CARVALHO BARRETO et al., 2020). 

 

4.2.2 Brief description of the used SWAT hydrological model 

4.2.2.1. Input data and SWAT model setup 

 In this work, we applied a SWAT hydrological model, a physically based, semi-

distributed, continuous-time, long-term, and basin-scale hydrological model (ARNOLD et al., 

1998), a widely used tool for studying simulated hydrological and water quality responses to 

climate change around the world (BONUMA; REICHERT; RODRIGUES, 2015; BRESSIANI 

et al., 2015; BRIGHENTI et al., 2019; DE AMORIM; CHAFFE, 2019; FRANCESCONI et al., 

2016; PRASKIEVICZ; CHANG, 2009; SHIFERAW et al., 2018; TAN et al., 2019; TUPPAD 

et al., 2011; VENETSANOU et al., 2020). 

A methodological flowchart for the SWAT model set up and calibration to simulate the 

climate change scenarios is presented in Figure 26. 
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To set up the SWAT hydrological model, four main types of data are required, including 

three maps, which are land use and soil type maps, a Digital Elevation Model (DEM), and a 

series of meteorological data such as precipitation mm), minimum and maximum air 

temperatures (ºC), relative humidity (%), wind speed (m.s-1) and solar radiation. 

Hence, firstly, careful work was done on database building, containing geospatial files 

and tabular data on the climatic conditions of the study for a period of 55 years (1961–2016), 

as summarized in Table 14, to represent greater spatiotemporal variability of hydrological 

processes (NEACHELL, 2014). 

The climatic data from 1961 to 2016 were obtained through two databases, (i) daily 

rainfall data (i.e. precipitation) through the APAC (https://www.apac.pe.gov.br/), and (ii) 

complete meteorological data (precipitation, global radiation, relative air humidity or dew point 

temperature, average air temperature, maximum and minimum air temperatures, and wind 

speed) through the INMET (http://www.inmet.gov.br/projetos/rede/pesquisa/inicio.php). 

Simulated climate data  
(2006 – 2100) 

Multi-model Ensemble (RCP 4.5 
and RCP 8.5) 

CMhyd model using LINEAR 
SCALING technique for bias 
correction (to identify biases) 

 

 

 

 

Calibrated SWAT model 

Figure 26: Flow chart of data processing, SWAT model setup, and bias correction 
methodology 

Corrected RCM future climate data  
(SWAT model) 

 

 

 

 

 

https://www.apac.pe.gov.br/
http://www.inmet.gov.br/projetos/rede/pesquisa/inicio.php
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The soil-types map was based on soil mapping carried out by EMBRAPA-Soils, from 

the information provided by the Agroecological Zoning of Pernambuco (ZAPE) project, with a 

resolution of 1: 5 000 000, identifying nineteen predominant soil types presented in Figure 27, 

which shows slope (a), land-use (b), and soil type (c) maps of the SFRB. 

The DEM was obtained from the STRM, a partnership between NASA and NIMA, 

Germany (DLR), and Italy (ASI), available at the Embrapa website, where there are archives 

of the altimetry of Brazil. The images are in Geo Tiff format (16 bits) with a spatial resolution 

of the 90-m grid and SIRGAS2000 Geographic Coordinate System. 

The lan- use map of the SFRB was obtained from Landsat 8 satellite images, a TM 

instrument with a spatial resolution of 30 m, obtained together with the MapBiomas project, 

referring to the year 2019. The mapping was performed using the supervised classification 

method through ArcGIS 10.3 software, adopting a maximum likelihood classifier. Land-use 

was divided into eleven classes of interest, and for the characterization of the land use in SFRB, 

the information contained in the SWAT database, which has multiple types of land use and 

vegetation cover, was associated with the classes listed by the Brazilian Company of 

Agricultural Research (EMBRAPA). 

 

 

 

 

 

.
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Table 14: SWAT input data used for the São Francisco River basin model setup 
Data Description / Properties Scale Source 

DEM (Digital 
Elevation Model) 

–––––––––––––––––––––––––––––––––––––––––––––– 
–––––––––––––––––––––––––––––––––––––––––––––– 

90-m grid EMBRAPA/NASA 
(SRTM) 

Lan-use map Developed from Landsat Thematic Mapper (TM) image (year 2019) 30 x 30 m MapBiomas 

Soil-types map Soil map of the seven states 1: 5000.000 IBGE 

 

Soil parameters 
 

Soil depths, texture, and organic matter 
 

Hydrological groups 
 

Other soil parameters were estimated based on Pedo-transfer functions 

 
 

Typical soil profile per soil 
type from the study area   

 

EMBRAPA 
 

 
Climate data  

  

Precipitation, minimum and maximum temperatures (ºC), 

wind speed (m.s1), relative humidity (%), and insolation 

(converted to solar radiation (MJ m-2. d-1) 

Daily Mean  
(averages and total),   

INMET, ANA, and 

APAC (for 

Pernambuco state) 

Flow Discharge river data (for calibration purposes) Monthly averages (m3/s) ANA and APAC 

Source: adapted by the author (2023) from several private and public agencies (BRESSIANI et al., 2015)* 

 

*The agencies include the Shuttle Radar Topography Mission (SRTM) of the National Aeronautics and Space Administration (NASA), the Ministry 

of the Environment (MMA), the National Supply Company (CONAB), the Brazilian Institute of Geography and Statistics (IBGE), Brazilian 

Agricultural Research Corporation (EMBRAPA), MAPBIOMAS initiative, National Water Agency (ANA), Pernambuco State Agency for Water 

and Climate (APAC), National Institute of Meteorology (INMET). 
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Figure 27: Slope (a), land-use (b), and soil type (c) maps of the São Francisco River Basin 
 

(a) 
(b) 

(c) 
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Table 15 presents the main characteristics of the main reservoirs considered in this study, 

namely: Luiz Gonzaga/Itaparica (3,549 hm3) and Sobradinho (28,669 hm3) located in the Sub-

Middle São Francisco, Paulo Afonso I–IV (26,0 hm3) located in Upper São Francisco, Xingó 

(0,4028 hm3), and Três Marias (15,278 hm3), located in the Upper São Francisco; where 

Sobradinho, Três Marias and Luiz Gonzaga account to 58,20%, 31,02%, and 6,62%, respectively, 

of the water used for power generation in the northeast (SUN et al., 2016). 

 

Table 15: The main characteristics of the main reservoirs considered in this study 
Reservoir IYRES RES_ESA RES_EVOL RES_PSA RES_PVOL 

Luiz Gonzaga 1988 85846.00146 1223945.59 79126.7917 1108691.86 
Sobradinho 1979 438423.0522 3897109.83 398496.517 3479056.686 

Paulo Afonso I–IV 1979 438.0617869 2253.47312 411.042626 2039.847769 
Xingó 1954 6223.309189 379313.54 6205.2632 373095.435 

Três Marias 1994 105460 1885526 88987.9 1497413 
 

More details of the reservoirs considered in this study are represented in Annex A, which 

contains the height x area x volume curves, as recommended in paragraph 1, item II, of Article 8 

of the ANA and Ministry of Environment joint resolution (MINISTÉRIO DO MEIO DO MEIO 

AMBIENTE / ANA - AGÊNCIA NACIONAL DE ÁGUAS, 2013). 

 

The hydrological group was adopted following the Brazilian soils classification (SARTORI 

ET AL, 2005), and Pedo-transfer Functions (PTF) listed in Table 16 were used to estimate the other 

soil parameters/ physical-chemical characteristics needed for SWAT (e.g., soil depths, texture, and 

organic matter) of each type of soil, from the soil data made available by Embrapa soils. 

 
Table 16: Most used Pedo-transfer Functions (PTF) 

Equation/model Eq. Ref.  

• 𝐒𝐒𝐒𝐒𝐒𝐒_𝐁𝐁𝐁𝐁 = 𝝆𝝆𝑩𝑩 =  𝝆𝝆𝑵𝑵 × (𝟏𝟏 − 𝑹𝑹𝒗𝒗) + (𝑹𝑹𝒗𝒗 × 𝟐𝟐.𝟔𝟔𝟔𝟔) 
o 𝝆𝝆𝑵𝑵 = (𝟏𝟏 − 𝜽𝜽𝑺𝑺) × 𝟐𝟐.𝟔𝟔𝟔𝟔 

 𝜽𝜽𝑺𝑺 = 𝜽𝜽𝟑𝟑𝟑𝟑 + 𝜽𝜽(𝑺𝑺−𝟑𝟑𝟑𝟑) − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎× (𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑 
• 𝜽𝜽𝟑𝟑𝟑𝟑 = 𝜽𝜽𝟑𝟑𝟑𝟑𝒕𝒕 + [𝟏𝟏.𝟐𝟐𝟐𝟐𝟑𝟑× (𝜽𝜽𝟑𝟑𝟑𝟑𝒕𝒕)𝟐𝟐 − 𝟎𝟎.𝟑𝟑𝟎𝟎𝟎𝟎× (𝜽𝜽𝟑𝟑𝟑𝟑𝒕𝒕)−

𝟎𝟎.𝟎𝟎𝟏𝟏𝟔𝟔] 
o 𝜽𝜽𝟑𝟑𝟑𝟑𝒕𝒕 = −𝟎𝟎.𝟐𝟐𝟔𝟔𝟏𝟏× (𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) +

𝟎𝟎.𝟏𝟏𝟎𝟎𝟔𝟔× (𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) + 𝟎𝟎.𝟎𝟎𝟏𝟏𝟏𝟏× 𝐒𝐒𝐎𝐎+
𝟎𝟎.𝟎𝟎𝟎𝟎𝟔𝟔× [(𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) × 𝐒𝐒𝐎𝐎]−
𝟎𝟎.𝟎𝟎𝟐𝟐𝟎𝟎× [(𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) × 𝐒𝐒𝐎𝐎] +
𝟎𝟎.𝟎𝟎𝟔𝟔𝟐𝟐× [(𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) ×
(𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂 𝟏𝟏𝟎𝟎𝟎𝟎⁄ )] + 𝟎𝟎.𝟐𝟐𝟎𝟎𝟎𝟎 

 𝐒𝐒𝐎𝐎 = (𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐁𝐁𝐒𝐒 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) × 𝟏𝟏.𝟎𝟎𝟐𝟐 
Possibly, this factor will be modified to 
2 instead of 1.72 for soils in 
Pernambuco (PRIBYL, 2010). 
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(SAXTON; 
RAWLS, 2006) 
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• 𝜽𝜽(𝑺𝑺−𝟑𝟑𝟑𝟑) = 𝜽𝜽(𝑺𝑺−𝟑𝟑𝟑𝟑)𝒕𝒕 + �𝟎𝟎.𝟔𝟔𝟑𝟑𝟔𝟔 × 𝜽𝜽(𝑺𝑺−𝟑𝟑𝟑𝟑)𝒕𝒕 − 𝟎𝟎.𝟏𝟏𝟎𝟎𝟎𝟎� 
o 𝜽𝜽(𝑺𝑺−𝟑𝟑𝟑𝟑)𝒕𝒕 = 𝟎𝟎.𝟐𝟐𝟎𝟎𝟐𝟐 × (𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) +

𝟎𝟎.𝟎𝟎𝟑𝟑𝟎𝟎× (𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) + 𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐× 𝐒𝐒𝐎𝐎−
𝟎𝟎.𝟎𝟎𝟏𝟏𝟐𝟐× [(𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) × 𝐒𝐒𝐎𝐎]−
𝟎𝟎.𝟎𝟎𝟐𝟐𝟎𝟎× [(𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) × 𝐒𝐒𝐎𝐎]−
𝟎𝟎.𝟔𝟔𝟐𝟐𝟎𝟎× [(𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) ×
(𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂 𝟏𝟏𝟎𝟎𝟎𝟎⁄ )] + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐 

o 𝑹𝑹𝒗𝒗 = (𝜶𝜶× 𝑹𝑹𝒘𝒘)/[𝟏𝟏 − 𝑹𝑹𝒘𝒘 × (𝟏𝟏 − 𝜶𝜶)] 
 𝜶𝜶 = 𝝆𝝆𝑵𝑵 𝟐𝟐.𝟔𝟔𝟔𝟔⁄  
 𝑹𝑹𝒘𝒘 = 𝐒𝐒𝐒𝐒𝐒𝐒_𝐑𝐑𝐒𝐒𝐂𝐂𝐑𝐑 𝟏𝟏𝟎𝟎𝟎𝟎⁄  

• 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐀𝐀𝐂𝐂 = 𝜽𝜽𝟑𝟑𝟑𝟑 − 𝜽𝜽𝟏𝟏𝟔𝟔𝟎𝟎𝟎𝟎 
o 𝜽𝜽𝟑𝟑𝟑𝟑 = 𝜽𝜽𝒓𝒓 + 𝜽𝜽𝒔𝒔−𝜽𝜽𝒓𝒓

[𝟏𝟏+(𝜶𝜶×|𝚿𝚿|)𝒏𝒏]𝒎𝒎
 

 𝜽𝜽𝒓𝒓 =

�
𝟐𝟐𝟑𝟑.𝟑𝟑𝟐𝟐𝟔𝟔𝟎𝟎+ 𝟎𝟎.𝟏𝟏𝟏𝟏𝟎𝟎𝟑𝟑 × 𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂− 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 × 𝐒𝐒𝐒𝐒𝐒𝐒_𝐁𝐁𝐁𝐁+
𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎× (𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 × 𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂) − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟎𝟎× 𝐂𝐂𝐒𝐒𝟐𝟐 −

𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟐𝟐× 𝐅𝐅𝐒𝐒𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐× 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟐𝟐
� 𝟏𝟏𝟎𝟎𝟎𝟎�  

• 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 = 𝐂𝐂𝐒𝐒 + 𝐅𝐅𝐒𝐒 
 𝜽𝜽𝒔𝒔 =

�
𝟎𝟎𝟏𝟏.𝟔𝟔𝟐𝟐𝟎𝟎𝟑𝟑 − 𝟑𝟑𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟔𝟔× 𝐒𝐒𝐒𝐒𝐒𝐒_𝐁𝐁𝐁𝐁+ 𝟏𝟏.𝟔𝟔𝟎𝟎𝟐𝟐𝟔𝟔× 𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐁𝐁𝐒𝐒+

𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟐𝟐 × (𝐂𝐂𝐒𝐒 × 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒)− 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟔𝟔× (𝐂𝐂𝐒𝐒× 𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂)−
𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏𝟐𝟐 × 𝐂𝐂𝐒𝐒𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏× 𝐅𝐅𝐒𝐒𝟐𝟐

� 𝟏𝟏𝟎𝟎𝟎𝟎�  

 𝜶𝜶 = 𝒆𝒆
��
𝟐𝟐𝟎𝟎𝟔𝟔.𝟔𝟔𝟔𝟔𝟎𝟎𝟔𝟔−𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔×𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒−𝟎𝟎.𝟏𝟏𝟑𝟑𝟐𝟐𝟎𝟎×𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂−𝟐𝟐𝟎𝟎𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎×𝐒𝐒𝐒𝐒𝐒𝐒_𝐁𝐁𝐁𝐁−
𝟎𝟎.𝟎𝟎𝟏𝟏𝟐𝟐𝟎𝟎×(𝐂𝐂𝐒𝐒×𝐅𝐅𝐒𝐒)+𝟎𝟎.𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎×(𝐂𝐂𝐒𝐒×𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒)+𝟎𝟎.𝟎𝟎𝟔𝟔𝟏𝟏𝟎𝟎×(𝐅𝐅𝐒𝐒×𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂)+

𝟎𝟎.𝟎𝟎𝟔𝟔𝟏𝟏𝟎𝟎×𝐂𝐂𝐒𝐒𝟐𝟐
� 𝟏𝟏𝟎𝟎𝟎𝟎� �

 

 𝒏𝒏 = �
𝟏𝟏𝟔𝟔𝟐𝟐.𝟐𝟐𝟔𝟔𝟏𝟏𝟎𝟎 − 𝟎𝟎.𝟎𝟎𝟐𝟐𝟔𝟔𝟐𝟐 × (𝐂𝐂𝐒𝐒 × 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒) −

𝟎𝟎.𝟎𝟎𝟐𝟐𝟔𝟔𝟏𝟏× �(𝐅𝐅𝐒𝐒× 𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂)�+ 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟑𝟑× 𝐅𝐅𝐒𝐒𝟐𝟐 −
𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎× 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟐𝟐

� 𝟏𝟏𝟎𝟎𝟎𝟎�  

 𝚿𝚿 = 𝟑𝟑𝟑𝟑 
o 𝜽𝜽𝟏𝟏𝟔𝟔𝟎𝟎𝟎𝟎 = 𝜽𝜽𝒓𝒓 + 𝜽𝜽𝒔𝒔−𝜽𝜽𝒓𝒓

[𝟏𝟏+(𝜶𝜶×|𝚿𝚿|)𝒏𝒏]𝒎𝒎
 

𝚿𝚿 = 𝟏𝟏𝟔𝟔𝟎𝟎𝟎𝟎 
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(TOMASELLA; 
HODNETT; 

ROSSATO, 2000) 

• 𝐒𝐒𝐒𝐒𝐒𝐒_𝐑𝐑 = 𝟏𝟏𝟎𝟎𝟑𝟑𝟎𝟎 × (𝜽𝜽𝑺𝑺 − 𝜽𝜽𝟑𝟑𝟑𝟑)(𝟑𝟑−𝝀𝝀) 
o 𝝀𝝀 = 𝟏𝟏/𝑩𝑩 

 𝑩𝑩 = [𝐥𝐥𝐥𝐥(𝟏𝟏𝟔𝟔𝟎𝟎𝟎𝟎) − 𝐥𝐥𝐥𝐥(𝟑𝟑𝟑𝟑)] [𝐥𝐥𝐥𝐥(𝜽𝜽𝟑𝟑𝟑𝟑) − 𝐥𝐥𝐥𝐥(𝜽𝜽𝟏𝟏𝟔𝟔𝟎𝟎𝟎𝟎)]⁄  

(3)  

(SAXTON; 
RAWLS, 2006) 

• 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐁𝐁 = 𝟎𝟎.𝟔𝟔 𝒆𝒆(𝟎𝟎.𝟎𝟎×𝐒𝐒𝐎𝐎)⁄  (4) 

• 𝐔𝐔𝐒𝐒𝐒𝐒𝐔𝐔_𝐑𝐑 = �𝟎𝟎.𝟐𝟐 + 𝟎𝟎.𝟑𝟑 × 𝒆𝒆�−𝟎𝟎.𝟎𝟎𝟐𝟐𝟔𝟔𝟔𝟔×𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁×�𝟏𝟏−�𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒
𝟏𝟏𝟎𝟎𝟎𝟎 ����× � 𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐒𝐒𝐒𝐒𝐂𝐂×𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒
�
𝟎𝟎.𝟑𝟑

× �𝟏𝟏 −

� 𝟎𝟎.𝟐𝟐𝟔𝟔×𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐁𝐁𝐒𝐒
𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐁𝐁𝐒𝐒×𝒆𝒆(𝟑𝟑.𝟎𝟎𝟐𝟐−𝟐𝟐.𝟎𝟎𝟔𝟔×𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐁𝐁𝐒𝐒)��× �𝟏𝟏 − � 𝟎𝟎.𝟎𝟎×𝐒𝐒𝐒𝐒𝟏𝟏

𝐒𝐒𝐒𝐒𝟏𝟏×𝒆𝒆(−𝟔𝟔.𝟔𝟔𝟏𝟏+𝟐𝟐𝟐𝟐.𝟎𝟎×𝐒𝐒𝐒𝐒𝟏𝟏)�� 
o 𝐒𝐒𝐒𝐒𝟏𝟏 = 𝟏𝟏 − (𝐒𝐒𝐒𝐒𝐒𝐒_𝐒𝐒𝐒𝐒𝐒𝐒𝐁𝐁 𝟏𝟏𝟎𝟎𝟎𝟎⁄ ) 

 

(5) 
 

(SHARPLEY;WIL
LIAMS, 1993) 

The physical properties obtained by the above pedotransfer functions are maximum soil 

depth (SOL_ZMX; mm), clay (<0.002 mm; SOL_CLAY; %), silt (> 0.002 and <0.05 mm; 

SOL_SILT; %), sand (> 0.05 and <2 mm; SOL_SAND; %), stone (> 2 mm; SOL_ROCK; %), and 

organic carbon (SOL_CBN; %). 

 

4.2.2.2 SWAT model calibration procedures 

The SWAT model used in the present work was calibrated as part of the BRICS project 

(ANDRADE et al., 2023). The calibration procedure was performed in the SWAT-CUP, using the 

SUFI-2 algorithm (ABBASPOUR et al., 2007). 
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The calibration took place considering one of the outputs of the model: flow data (1961 – 

2016), obtained through the ANA website (http://hidroweb.ana.gov.br/), with the warm period of 

the first five years. Such calibration was also performed by the simultaneous multi-site method, 

which consisted of using flow data from all fluviometric stations to calibrate the model by changing 

and optimizing the parameters of all sub-basins at the same time (NKIAKA; NAWAZ; LOVETT, 

2018). 

The performance of the SWAT model used in this thesis was assessed using three (3) 

performance rating indices, namely: The coefficient of determination (r2), Nash- Sutcliffe 

Simulation Efficiency Coefficient14 (NSE), and the Percent bias (PBIAS), within the range of 

variation (MORIASI et al., 2007), which considers the evaluation of the modeling at a time-step. 

 

4.2.2.3 Model parameterization and simulations in SWAT-CUP 

In order to improve the performance of the SWAT model, before initiating the calibration 

process some parameters were modified in relation to the default values of the model; such 

modifications are presented in Table 17. These are parameters used in the monthly calibration of 

the São Francisco River basin (sub-medium region), describing the standard intervals of the model, 

the minimum and maximum values adopted, as well as the adjusted values obtained in the best 

SWAT model simulations. 

Table 17: Used parameters in the calibration of the São Francisco River basin (sub-medium region) 
Parameter Adjusted value Minimum value Maximum value 

1: A__GWQMN.gw 4000,00 4000,00 4000,00 
2: V__GW_DELAY.gw 338,81 307,64 390,74 

3: R__CN2.mgt -0,18 -0,19 -0,18 
4: R__SOL_AWC(..).sol 0,35 0,35 0,35 

5: R__SOL_Z(..).sol 0,19 0,19 0,20 
6: R__SOL_K(..).sol 0,21 0,21 0,27 

7: A__CH_K2.rte 25,17 24,98 25,43 
8: V__SURLAG.bsn 17,22 17,15 17,25 

9: V__LAT_TTIME.hru 21,22 19,51 27,10 
10: R__SLSUBBSN.hru -0,08 -0,08 -0,08 
11: R__HRU_SLP.hru -0,20 -0,21 -0,20 

12: V__RCHRG_DP.gw 0,26 0,23 O,31 
13: R__ALPHA_BF.gw -0,05 -0,06 -0,05 
14: R__SOL_BD(..).sol 0,04 0,04 0,05 

15: V__ALPHA_BNK.rte -0,29 -0,29 -0,27 

 
14Additionally, the Nash- Sutcliffe Simulation Efficiency Coefficient (NSE) was used as the objective function. 

http://hidroweb.ana.gov.br/
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16: V__GW_REVAP.gw 0,20 0,20 0,20 
17: V__REVAPMN.gw 34,68 30,00 35,67 

Source: (ANDRADE et al., 2023) 

The letter at the beginning of the parameters indicates the type of operator adopted by the 

SWAT-CUP during the calibration process, as follows: R (relative) V (replace), or even A 

(absolute). Thus, if the operator is of type "V" (replace), the program replaces the value of the 

parameter resulting from the best simulation of the previous iteration by a new value (within the 

range of minimum and maximum variation adopted by the user). 

While, if the parameter is used with the "R" (relative) operator, the SWAT-CUP multiplies 

the parameter value resulting from the best simulation of the previous iteration by a new value (also 

within the minimum and maximum variation range adopted by the user). For method "A" 

(absolute), a value (within the variation range) is added to the value of the parameter resulting from 

the best simulation of the previous iteration. 

In this work, 20 simulations and a single iterative process were carried out, since the large 

area of the basin brings limitations in terms of processing time. However, acceptable values were 

found in these simulations, with the best simulation being number 19. 

In general, parameters related to groundwater and soil characteristics were the most 

adopted, representing 9 parameters among the 17. Nevertheless, it should be noted that for 

calibration of SWAT model simulations with streamflow data, one of the most used parameters in 

the literature is the Curve Number for the AMCII moisture condition (CN2.mgt), since small 

modifications in its minimum and maximum interval values can produce significant changes in the 

resulting hydrograph. 

 

4.2.3 Linear scaling technique for bias correction 

As clearly described in Chapter 3, the climate future projection data (2006–2100) used in 

this study were submitted for bias correction using the CMhyd model (RATHJENS et al., 2016), 

adopted the Linear Scaling method (TEUTSCHBEIN; SEIBERT, 2012, 2013). 

In the LS approach, bias-corrected simulation data should agree, in their monthly average 

values, with the observed data and a factor based on the ratio of the long-term monthly average 

observed (ANDRADE et al., 2021). 
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4.2.4 Assessment of climate change impacts on water resources 

The SWAT model used in this work was calibrated for the baseline conditions (1961 to 

2005) and then, applied to assess climate change impacts on water resources in the São Francisco 

River Basin.  

After performing the bias correction of the climate future projections data (2006–2100) 

using the Linear Scaling method (TEUTSCHBEIN; SEIBERT, 2012, 2013), the water balance 

components (surface runoff, evapotranspiration, and groundwater recharge) were simulated by the 

SWAT model and compared in three future periods. 

The referred periods are – short-term (2011 to 2040), medium-term (2041 to 2070), and 

long-term (2071 to 2100) – and compared with the baseline period (1961 to 2005), under two RCPs 

(RCP 4.5 and RCP 8.5). 

 

4.3 Results and Discussions 

4.3.1. Performance analysis of the simulated hydrographs by the SWAT model with the 

observed data 

As a results, figure 28 shows the monthly hydrographs with data observed and simulated 

by the SWAT model in the calibration period (1966-2016), considering three stations: 127 (Figure 

28a), 187 (Figure 28b), and 268 (Figure 28c), respectively. 

For the São Francisco River basin, it appears that among the three fluviometric stations 

evaluated, all presented acceptable NS indices, with NS classified as satisfactory or good, varying 

between 0.55 and 0.69, according to the adopted classification (MORIASI et al., 2007). 

Regarding the r² values, the stations presented values of 0.6 and 0.7, indicating that, in 

general, there is good agreement between the data observed and simulated by the model. Such 

agreement is quite visible in the hydrographs, where the observed data are well accompanied by 

simulated data. However, it is verified that in the seasons, some observed peaks are not well 

represented by the model, with, in general, underestimation of the peaks from the beginning of the 

period until mid-1994, when from that year, the peaks begin to be overestimated by the SWAT 

model. 

In this study, considering the entire São Francisco River basin, the flow simulated by SWAT 

was slightly lower than the observed flow, with a relative difference of approximately 2% for both 

periods (January to April) in the years 1993 and 1994. 
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Very good NS values (0.58 and 0.49) were obtained when calibrating the Salt Lake Sub-

Basin, in Iran (KHALILIAN; SHAHVARI, 2018). Good model performance was achieved after 

calibration and validation with daily discharge (NSE > 0.7 for both model setups) in a tropical 

inland valley catchment of central Uganda, East Africa (GABIRI et al., 2019). 

Similar results were obtained calibrating the SWAT model using evapotranspiration (ET) 

and leaf area index (LAI), whereas remotely sensed precipitation and other climatic parameters 

were used as forcing data for the 6300 km2 Day Basin, a tributary of the Red River in Vietnam (HA 

et al., 2018). The monthly flow at two flow measurement stations was adequately estimated (NSE 

= 0.71 and 0.63, for Phu Ly and Ninh Binh, respectively. According to the authors, this outcome 

demonstrates the capability of the SWAT model to obtain a spatial and accurate simulation of eco-

hydrological processes, also when rivers are ungauged, and the water withdrawal system is very 

complex. 

Regarding the base flow, in general, it appears that there are overestimations by the model, 

especially in the final years of seasons 127 and 187.  

Similar agreements were obtained when calibrating the Tons River Basin, India, using the 

SUFI-2 algorithm, where the authors obtained the coefficient of determination (R2) values of 0.74 

and 0.75 during the calibration and validation periods, respectively (KUMAR et al., 2017). 

Analogous findings were reported modeling hydrological response under climate change scenarios 

using the SWAT model, in the Ilala watershed, Northern Ethiopia (SHIFERAW et al., 2018), the 

simulated and observed hydrographs of the total river yield showed a good agreement during 

calibration (NSE = 0.51, R2 = 0.54) and validation (NSE = 0.54, R2 = 0.63). 

Similar results were obtained evaluating the potential impacts of climate change on water 

resources of the Kelantan River Basin in north-eastern Peninsular Malaysia using the SWAT model 

(TAN et al., 2017), the results showed good performance in monthly streamflow simulation, with 

the NSE values of 0.75 and 0.63 for calibration and validation, respectively. 

Regarding the PBIAS values, it appears that all stations presented values classified as 

satisfactory (station 187), good (station 127), and very good (station 268), according to the 

classification proposed by the literature (VAN LIEW et al., 2007), indicating good accuracy in the 

simulation of the model. PBIAS values of -3,55 were obtained while calibrating and uncertainty 

analyzing for streamflow prediction of the Tons River Basin, India, using the SUFI-2 algorithm 

(KUMAR et al., 2017), being classified as very good. 
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Figure 28: Monthly hydrogram with data observed and simulated by the SWAT model in the calibration period (1966 – 2016) in the São Francisco 
Basin, considering stations 127 (A), 187 (B), and 268 (C) 
Source: (ANDRADE et al., 2023) 
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4.3.2 Hydrological Processes under future climate change scenarios 

 The Multi-model used in this chapter was built through a modified Reliability Ensemble 

Averaging (REA) approach (BURI et al., 2022) – as described in Chapter 3. This measures the 

multi-model uncertainty in the form of model performance to increase confidence when projecting 

climate data into the future while projecting variables in the future periods. 

 The Linear Scaling method adopted in this study was suitable to correct the raw historical 

ensembled climate data (1961-2005). This approach has been demonstrated to be effective for the 

study of precipitation and temperature data in previous works (ANDRADE et al., 2021; 

TEUTSCHBEIN; SEIBERT, 2012, 2013). 

 The results of the changes in average annual hydrological processes for the SFRB simulated 

by the SWAT model under climate scenarios and also for the baseline period are presented in Table 

18. Simulated precipitation for the medium-term period (2041 – 2070) was 842.13 mm and 903.67 

mm under RCPs 4.5 and 8.5, respectively, showing an increase in both scenarios compared to the 

baseline period. 

 Simulated evapotranspiration (ET) under RCP 8.5 also increases over time, since this 

process is closely related to precipitation, which also increased. In the baseline period, simulated 

ET was 287.6 mm, while for the ensembled climate data predictions the values increased to a 

minimum of 1349.57 mm under the short-term RCP 4.5. 

 The percolation in the SFRB is projected to increase over time. Simulated values for near-, 

mid-, and far-futures was 336.41 mm, 345.50 mm, and 363.84 mm, respectively under RCP 4.5, 

showing an increase compared to the baseline period. 

 On the other hand, simulated values were 330.96 mm, 383.09 mm, and 404.31 mm (for 

near-, mid-, and far-futures, respectively) under the RCP 8.5, also showing an increase compared 

to the baseline period. Similar agreements were found applying the SWAT model for the analysis 

of hydrological processes in the experimental basin of the Jatobá Stream, in the semiarid region of 

the State of Pernambuco, Brazil, considering the calibration and validation of the model from 

streamflow and soil moisture data (MARONEZE et al., 2014), where the regeneration of the 

vegetative cover over 21% of the hilltop areas of arborescent Caatinga led to a significant increase 

in percolation (42%). 

 Overall, the groundwater contribution to streamflow is projected to decrease under the 

short-term RCP 4.5. and RCP 8.5 periods (compared to the baseline period), with simulated values 

of 297.18 mm and 290.60 mm, respectively. Similar results were obtained investigating how 

significant baseflow reductions are related to the observed SFRB trends (LUCAS et al., 2021b). 

And in the other two periods (mid-, and far-futures), the simulated values showed an increase in 

the groundwater contribution to streamflow for both scenarios. 
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Table 18: Average annual hydrological processes for the SFRB simulated by the SWAT model 
 

PROCESS 
 

 
BASELINE 

(1961 – 2005) 

Short-term 
(2011 – 2040) 

Medium-term 
(2041 – 2070) 

Long-term 
(2071 – 2100) 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
Precipitation (mm) 790.7 847.67 845.25 842.13 903.67 866.80 919.90 

ET (mm) 287.6 1349.57 1360.24 1358.71 1409.63 1402.82 1542.03 
ET0 (mm) 586.9 476.78 472.69 458.14 467.12 461.40 452.63 

PERC (mm) 314.66 336.41 330.96 345.50 383.09 363.84 404.31 
GW_Q (mm) 311.03 297.18 290.60 303.90 337.75 321.03 358.80 
WYLD (mm) 340.07 357.10 349.81 368.05 411.47 389.49 443.78 

ET – evapotranspiration; ET0 – potential evapotranspiration; PERC – percolation; GW_Q – 
groundwater contribution to streamflow; WYLD – water yield. 

 

 The ET0 in SFRB is projected to decrease over time. In the baseline period the potential 

evapotranspiration was 586.9 mm and in the short-, medium- and long-term scenarios this value, 

decreased by 110.12, 128.76, and 125.5 mm under RCP 4.5, and in the more pessimistic scenario 

(RCP 8.5) these values decreased by 114.21 mm, 119.78 mm, and 134.27 mm, reaching 452.63 

mm by the end of the 21st-century. 

The results projected a minimum of 113.6 mm (decrease of 27.4%) for the period 2071 – 

2100 under RCP 8.5. This results aligns with those found in an assessment of the future climate 

change impacts on water resources of the Upper Sind River Basin, India, highlighting a baseflow 

decrease of 8.9% when comparing the baseline period (1961 – 1990) with the midcentury (2021 – 

2050) (NARSIMLU; GOSAIN; CHAHAR, 2013). 

The water yield is a hydrological process that can be representative of the water availability 

within a watershed (SUN et al., 2006). The results obtained in this study suggest that water yield 

within the SFRB will increase in the future, reaching 443.78 mm in RCP 8.5 in the long-term. Even 

though the water yield will be increasing in the upcoming climate change scenarios, effective, and 

suitable water management planning should be conducted to safeguard water security to reduce the 

risk of conflict – for different stakeholders and water resource management policymakers. 

 

4.3.3 Variations in streamflow under climate change 

Projected annual streamflow changes for the 2017–2040, 2041–2070, and 2071-2100 

periods under the two RCP scenarios are shown in Figure 29. Although there were some differences 

between the scenarios and among the future periods, in general streamflow was predicted to 

decrease over time, which could be attributed to rainfall decreases and temperature increases over 

the SFRB. 

These findings corroborate those found using three different downscaled global climate 

models to analyze the impact of climate change on the hydroelectric potential of various basins 
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across South America (DE JONG et al., 2021), having determined that as a consequence of climate 

change, streamflow in the São Francisco River is projected to decline 46% in the coming 3 decades 

compared to data from 1961 to 1990, and this could become greater challenging to the increasing 

consumptive demands for water from the basin by the 2030s (DA SILVA et al., 2021), especially 

for irrigation, and reduced power generation. 

The streamflow changes are generally associated with changes in rainfall projected to be 

marked by the high levels of mean annual precipitations (COUTINHO; CATALDI, 2021), 

interspersed by long droughts between 2010 to 2100 for both scenarios. Increases and decreases 

were also reported in projected annual streamflow under three RCPs, namely: RCP 2.6, RCP 4.5, 

and RCP 8.5 (OUYANG et al., 2015). 

Monthly simulated streamflow for the future periods under RCPs scenarios are presented 

in Figure 29. In general, the streamflow patterns of the RCP 4.5 and 8.5 scenarios are very similar, 

but the magnitudes are different. Compared with the baseline streamflows, monthly streamflows 

tend to decrease over time. Mean monthly low flows are projected to decrease throughout the São 

Francisco River Basin, and the reductions were more pronounced for RCP 8.5 compared to RCP 

4.5, reaching a minimum flow of 4.18 m³s-1 in September of the period 2071-2100. High flows are 

also projected to decrease over the São Francisco river basin, with a maximum flow of 2060.78 m³ 

s-1 in January of the period 2070 – 2100 under the scenario RCP 4.5.  

Predicted streamflow decreases in all months in the future were also stated in the past 

(LUCAS et al., 2021b), and were attributed to a significant decreasing baseflow trend along the 

São Francisco river basin with the spatial agreement between decreased baseflow, increased ET, 

and irrigated agricultural land. 

Similar decreasing trends in average monthly and annual discharges by the end of the 

century under different scenarios were also reported in previous studies (OLIVEIRA; SANTOS E 

SILVA; LIMA, 2017; OUYANG et al., 2015), due to the extreme and prolonged droughts, which 

may negatively impact water availability and other ecosystem services. 
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Figure 29: Mean monthly simulated streamflows for the future periods under RCPs scenarios 

 

The results presented in this work reinforce the uncertainties associated with climate 

projections highly challenging, which can be attributed to the uncertainty linked to the selection of 

appropriate Global Climate Models (GCM). 

These are highly complex because of measurement error, randomness, and systematic error 

in multiple climate models (1) (BURI et al., 2022), the uncertainty associated with each 

representative concentration pathway (RCPs) (2) (ANDRADE et al., 2021), uncertainty to 

downscaling and bias correction methods and uncertainty of multiple hydro-climatic models (3) 

(ANDRADE et al., 2021; OUYANG et al., 2015), which can be reduced/improved by combining 

independent models in an ensemble, proposed as the best solution to increases confidence when 

projecting climate data into the future (BURI et al., 2022). 

Hence, all these both independent or combined uncertainties in future precipitation and 

temperature data can be propagated into streamflow simulation, and influence future water balance 

components projections (TAN et al., 2017). Therefore, studies such as these are needed to better 

understand such projections and to make more realistic and reliable inferences about the future of 

the climate in the regions (ANDRADE et al., 2021). 
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4.4. Conclusions  

In this study, the SFRB was calibrated using flow data in monthly time-step between 1961 

and 2016. Considering the representativeness of the basin hydrographic for hydrological modeling, 

the results were very satisfactory. One good agreement between time series of simulated and 

observed monthly flow was demonstrated using hydrographs, and also by statistical indices, with 

a performance from "satisfactory" to "very good". 

The calibrated SWAT model was used to assess the combined impacts of projected future 

climate changes on the water balance components in the SFRB. The results showed that more 

pronounced changes will occur if the drivers are combined, in particular for the mean annual 

streamflow and surface runoff. When combining the RCP 4.5 climate scenario, the mean annual 

streamflow and surface runoff are expected to change. 

The findings show that land-use planning can be one of the promising measures to reduce 

future water-related risks in the SFRB. However, it remains a challenge to accurately predict the 

future hydrological changes due to land use and climate change, since there are various 

uncertainties, in particular, associated with possible climate uncertainties and systematic errors due 

to the bias correction methods, RCPs, and the choice of the appropriate hydrological model, and 

the number of ensembled GCMs. 

Nevertheless, studies like this (bias corrected ensemble climate data) are extremely 

important since they seek to reduce these uncertainties and provide important information for the 

development of more effective climatic adaptation strategies to ensure coordinated management 

between different aspects of water issues. 

Based on historical observations and regional climate modeling, there is a strong indication 

that climate change considering a high emissions scenario will cause significant changes in the São 

Francisco River basin by the end of this century or the three time periods analyzed under the two 

RCP scenarios. In the future, increases in temperatures are expected in the SFRB for the three time 

periods analyzed under the two RCP scenarios. 

This study predicts large effects of climate change on the water balance of the study area. 

The processes expected to increase over time were evapotranspiration, percolation, baseflow, and 

water yield. On the other hand, the potential of evapotranspiration and mean monthly streamflows 

are expected to decrease over time. These forecasts point to serious water availability problems and 

increased vulnerability of the region to water shortages in the future. 
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Annex A: Detailed characteristics of the main reservoirs used in this study
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APPENDIX D  
Technical Note on SWAT+ hydrological model: A brief description and limitations 

 

1. General overview of SWAT+ model features 

The Soil & Water Assessment Tool (SWAT) is a public domain, physical-based, semi-

conceptual, distributed, continuous-time model that operates on a daily time step at basin scale 

(freely available at: https://swat.tamu.edu/), originally developed by the USDA-ARS and Texas 

A&M AgriLife Research (ARNOLD et al., 1998), to quantify the impact of land management 

practices in large, complex watersheds. The SWAT model integrates water quality and quantity 

modules and uses a two-level disaggregation scheme; a preliminary subbasin identification is 

carried out based on topographic criteria, followed by further discretization using land use and soil 

type considerations.  

Areas with the same topographic characteristics, soil type, land use, and management form 

a hydrologic response unit (HRU), a basic computational unit assumed to be homogeneous in 

hydrologic response to land-use change. 

This aims to predict the long-term impacts of management and the timing of agricultural 

practices within a year (i.e., crop rotations, planting and harvest dates, irrigation, fertilizer, and 

pesticide application rates and timing) and can simulate at the basin scale water and nutrients cycle 

in landscapes whose dominant land use in agriculture, besides being an effective tool to assess the 

environmental efficiency of best management practices and alternative management policies. 

 

1. 2 Model discretization and hydrological response units 

 The early version of the SWAT model was based on a basic computational unit assumed to 

be homogenous in hydrologic response to topographic characteristics, soil type, land use, and 

management (ARNOLD et al., 1998). Aiming to face the recent and future challenges regarding 

water resources management, was introduced a SWAT + model (BIEGER et al., 2017), a 

completely revised version of SWAT, for improved simulation of landscape position, overland 

routing, and floodplain processes within the watershed. GIS-based algorithms are used to extract 

river and floodplain geometry parameters mainly from Digital Elevation Models (DEM). 

Although it uses the SWAT model similar equations in estimating runoff and/or infiltration, 

evapotranspiration, plant growth, and routing, SWAT+ is considerably more flexible concerning 

the discretization and spatial configuration/representation of interactions and processes in the 

watershed (BIEGER et al., 2017), with the most important model modifications and their 

advantages.  

https://swat.tamu.edu/
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A schematic representation of landscape units recently introduced in the SWAT+ model is 

shown in Fig. 1. 

 
Fig. 1: Scheme of the conceptual model of water balance in the revised SWAT+ hydrological 

model. Source: modified from Dile et al. (2019) 
 
2. Faced limitations of using the SWAT+ model 

As stated in the general introduction section (chapter 1), this thesis is a part of the ongoing 

multilateral BRICS research project, titled “Integrated Water Management Model for Brazil, India, 

and South Africa under climate change scenarios” (BURI et al., 2022), where it was originally 

intended to use the SWAT+ model (BIEGER et al., 2017), a completely revised version of the 

SWAT model (ARNOLD et al., 1998). During the project assembling to date of the submission of 

this thesis, in Brazil, studies using the SWAT+ version as a tool had not yet been published, thus 

we faced serious problems since we dreamed enough more than our computational power, coupled 

with our large-scale watershed (~639 219 sq km), and it took about 10 days (per simulation) to 

create landscape units using the simplest method (as described below), besides the SWAT+ and 

SWATplusCUP models’ algorithms which were under development or newly developed and not 

having been tested in large-scale basins, we changed for SWAT 2012 versions. 

Firstly, for a more realistic representation of reservoir position and interactions with the 

landscape, among the three methods presented to create landscape units (SENENT-APARICIO; 

GEORGE; SRINIVASAN, 2021), the model did not allow the selection of the needed method, as 

aforementioned above, the buffer stream was the only ones fit (automatically) better for the São 

Francisco River basin.  
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This method is disadvantageous because is most likely to be used when the terrain is mostly 

flat (which was not the case in our study area, given the scale) and when other methods can give 

poor results (which were not possible to be optionally selected). So, testing (which was not 

possible) of the three methods would be necessary and important, to compare with the shapefile of 

floodable areas made available by the ANA. 

Secondly, amid widely developed calibration/validation programs that have been developed 

to calibrate hydrological models, the SWATplusCUP is one of the indicated to assess the sensitivity 

of hundreds of input variables in the SWAT+ model (VENETSANOU et al., 2020). The software 

allows for the fastest calibration process, and it is very optimized, but for this thesis’ study area, it 

was producing very unrealistic values as simulated values15.  

Guessing that SWATplusCUP was not handling the simulated high values well, and it was 

returning some extremely high values (>4*106 m3/s), I didn’t realize it could be a SWATplusCUP 

limitation before, that's why I checked every detail of my model's inputs. As I did not find any 

problems, SWAT+ Toolbox software (CHAWANDA et al., 2020) was applied for 

calibration/validation purposes, and it worked perfectly. 

Due to the limited number of SWAT+ and SWATplusCUP users, technical support from 

the developers (represented by Dr. Karim Abbaspour and his team at the Swiss Federal Institute of 

Aquatic Science and Technology – Switzerland), was requested. Among various recommendations, 

it was necessary to ensure that the provided SWATP.exe with the program was the same version as 

the one I used to run SWAT Tools.  

 

3. Final remarks and recommendations for future research 

This technical note provided the information to help researchers narrow down choices on 

the appropriate version of the model to use for large-scale watersheds and make a final decision as 

to which model (either SWAT or a completely revised SWAT+ version) is best for better 

understanding the hydrological behavior and the strategies for coping with different climatic 

conditions for specific São Francisco River basin projects, being necessary for the model user to 

review the details placed in this technical note and make a final decision. 

However, based on the undertaken effort during more than one year period in this project 

with the SWA+ model, we strongly do not recommend the use of developing or newly developed 

models for developing dissertations, theses, and related end-course works, due to the inconsistency 

of required testing and course completion deadlines.  

 
15Typically, watersheds ranging from 10 to 20 000 sq km are considered large, thus the considered watershed in this 
study (~639 219 sq km) is too large in Brazil, with high flow values range that can be very high (>104 m3/s). 
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Furthermore, as time passes, more new versions of SWAT+ models will be developed and 

many of the current model versions will be updated by developers. It should be noted that this 

review will require updates as new SWAT+ model versions. To model developers, providing model 

source codes (even under development) is encouraged whenever possible to support model (and 

outcome) transparency, and critically, research replicability. 
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CHAPTER V 
Key findings and concluding remarks  

 
The research steps developed in this doctoral thesis include the projection of spatially 

explicit land-use scenarios and hydrological, and climatic assessments for the São Francisco 

river basin through coupling different modeling approaches. 

In the second chapter, the developed model presented satisfactory performance, with an 

average spatial adjustment index between observed and simulated data in the 2019 validation 

year, of approximately 90%, with an average of commission and omission errors of 

approximately 2%. Among the five land use classes considered in this study, natural forest and 

pasture presented an average spatial adjustment means of around 88.75% and 97.13% (pattern 

changes); and when considering the areas where changes occurred, the classes that presented the 

highest values of spatial adjustment, agriculture, natural forest, and forest plantation stand out, 

with 61.53%, 56.47%, and 55.62%, respectively. The developed spatially explicit model 

successfully projected the future land-use change scenarios up to 2050, within the sustainable 

development, middle-of-the-road, and strong inequality scenarios, both considering the balance 

between global, national, regional, and local factors aligned with the global structure of SSPs 

and RCPs. Thus, water resources management must consider attending to the water demand for 

irrigation projected to increase in the upcoming decades, in addition to the conflicts/pressure for 

the different uses of water due to the increasing population and economic development. 

The third chapter, in turn, concludes that the developed MME presented a good 

performance on statistical long-term trends analysis of observed gridded precipitation and 

temperature data. Relative to the observation period, the entire SFRB is expected to experience 

increases in temperature and precipitation by the end of the 21st century. Except for upper São 

Francisco, where precipitation increases early in the season, lower, central, and lower São 

Francisco areas experience increased precipitation during the rainy season. These increasing 

trends in precipitation and temperature were revealed by the Mann-Kendall (MK) test. The 

Mann-Kendall (MK) test showed an increasing trend upstream, midstream, and downstream of 

the SFRB, and the Spearman correlation test demonstrated a high correlation even after 

excluding the possibility of negative effects. The autocorrelation in the MK test and the 

Spearman rho trend test is due to his Mann-Kendall test with whitening (PWMK). 

Fourth chapter provides an uncertainty analysis based on a multi-model approach that 

can provide practical support to end-users facing climate uncertainty in water resource 

management. The results obtained in this chapter show that, considering high-emission 
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scenarios, and climate change in his three time periods, analyzed based on his two RCP scenarios 

for the SFRB by the end of the 20th century. We showed strong evidence that it will produce 

significant changes in the study area. 
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